Data Science Group members are actively involved in the development of Bayesian and frequentist models for spatio-temporal data, including models with spatially varying coefficients. Conditional autoregressive priors, Moran’s eigenvector filtering, dimension reduction algorithms, penalized LASSO-type estimates and bootstrap-based uncertainty quantification are among the methodological tools that are used to estimate parameters and conduct inference on such models. Typical applications of space-time models in Geosciences include a) the evaluation of outputs from Regional Climate Models and b) the analysis of time series of remotely sensed imagery. Similar models have been developed to analyze the dynamics of regional economic variables.
Mathematics of information: Information is a core notion in many engineering and scientific disciplines. For example, much of modern statistics may be characterised as the process of extracting information from data. Over the past 60 years, information, along with its mathematical description via the Boltzmann-Shannon entropy, have played a crucial role in science and technology, both as a central metaphors providing intellectual guidelines, as well as a mathematically specific, technical, and precisely measurable quantities. Members of the Data Science group have been exploring the development of rigorous tools for the mathematical description of information, as well as the analysis of practical questions arising in a variety of applications, ranging from moder digital communications networks to finance, neuroscience and bioinformatics.
Incident/Anomaly Detection : Group members develop real-time algorithms for incident/anomaly detection, focusing mostly on network activity (e.g. vehicular networks). Decision trees and (nonparametric) quantile regressions are among the methodological tools that have been employed as key components of such algorithms. Typical applications include incident detection on vehicular networks based on loop detector data, fraud detection in bank transactions, etc.
Functional Data Analysis: Functional data analysis (FDA) focuses on data that can be curves, surfaces or anything else varying over a continuum. For instance, plasma thermograms are curves associated with a person’s health status; a group of such curves can be analyzed using FDA-analogues of conventional statistical procedures. The Data Science group develops segment-wise supervised classification schemes for multivariate functional data, which may reject noisy domains of the functional data and assign larger weights to segments that contain useful information for the classification groups of each study. A typical application of the proposed algorithms is disease identification/diagnosis.
Forecasting Multivariate Time Series: The group’s activities include research on linear (ARIMA) and nonlinear (smooth-transition or threshold autoregressions) parametric time series models that are estimated using a) fast penalized LASSO-type estimators or, b) Bayesian posteriors based on shrinkage priors (e.g. horseshoe). Such models are used in (real-time) forecasting applications, including for example, short-term forecasts of a) vehicular counts in a transportation network, b) energy outputs from wind- or solar-panel farms and c) emissions from heavy-duty diesel engines.
Deep Generative Learning: Generative models based on Deep Neural Nets have shown unprecedented capabilities in sampling data from complex but unknown distributions. Researchers in the Data Science Group develop novel algorithms for training generative models, focusing on Generative Adversarial Networks (GANs). GANs have been used in data augmentation schemes to generate synthetic data that follow the same distributional characteristics as the original dataset (which may contain sensitive information or limited number of cases). The proposed methodology has been applied to identify dyslexia in children, using measurements from specialized eye trackers.
Uncertainty Quantification in Stochastic Systems and Multilevel Models: Uncertainty quantification (UQ) is essential for the reliable and robust modelling of complex stochastic dynamics. The Data Science Group develops novel information-theoretic tools to address the challenges concerning the feasibility and efficiency of UQ in stochastic systems, which were used to analyze biological reaction networks. Furthermore, the Data Science group members conduct research on computationally intensive methods (e.g. bootstrap-based confidence intervals) for uncertainty quantification in models that capture nested data structures (multilevel models for categorical responses).
A. ONGOING PROJECTS
Tzirakis, K., Kamarianakis, Y., Kontopodis, N., Ioannou, C.V. The Effect of Blood Rheology and Inlet Boundary Conditions on Realistic Abdominal Aortic Aneurysms under Pulsatile Flow Conditions (2023) Bioengineering, 10 (2), art. no. 272, .
Doxa, A., Kamarianakis, Y., Mazaris, A.D. Spatial heterogeneity and temporal stability characterize future climatic refugia in Mediterranean Europe (2022) Global Change Biology, 28 (7), pp. 2413-2424.
Giacomazzo, M., Kamarianakis, Y. Bayesian estimation of subset threshold autoregressions: short-term forecasting of traffic occupancy (2020) Journal of Applied Statistics, 47 (13-15), pp. 2658-2689.
Nikoloudakis, N., Stagakis, S., Mitraka, Z., Kamarianakis, Y., Chrysoulakis, N. Spatial interpolation of urban air temperatures using satellite-derived predictors (2020) Theoretical and Applied Climatology, 141 (1-2), pp. 657-672.
Cho, N., El Asmar, M., Underwood, S., Kamarianakis, Y. Long-Term Performance Benefits of the Design-Build Delivery Method Applied to Road Pavement Projects in the U.S. (2020) KSCE Journal of Civil Engineering, 24 (4), pp. 1049-1059.
Birrell, J., Katsoulakis, M.A., Pantazis, Y. Optimizing Variational Representations of Divergences and Accelerating Their Statistical Estimation (2022) IEEE Transactions on Information Theory, 68 (7), pp. 4553-4572. https://www.scopus.com/inward/record.uri?eid=2-s2.0-85126710173&doi=10.1109%2fTIT.2022.3160659&partnerID=40&md5=71783f8baddf079a81f4406e49bfdfe4
Tsourtis, A., Papoutsoglou, G., Pantazis, Y. GAN-Based Training of Semi-Interpretable Generators for Biological Data Interpolation and Augmentation (2022) Applied Sciences (Switzerland), 12 (11), art. no. 5434, .
Karagiannaki, I., Gourlia, K., Lagani, V., Pantazis, Y., Tsamardinos, I. Learning biologically-interpretable latent representations for gene expression data: Pathway Activity Score Learning Algorithm (2022) Machine Learning, .
Pantazis, Y., Paul, D., Fasoulakis, M., Stylianou, Y., Katsoulakis, M.A. Cumulant GAN (2022) IEEE Transactions on Neural Networks and Learning Systems, .
Birrell, J., Dupuis, P., Katsoulakis, M.A., Pantazis, Y., Rey-Bellet, L. (f,Γ)-Divergences: Interpolating between f-Divergences and Integral Probability Metrics (2022) Journal of Machine Learning Research, 23, .
Tsourtis, A., Papoutsoglou, G., Pantazis, Y. Efficient discrimination between biological populations via neural-based estimation of RÉnyi divergence (2021) UNCECOMP Proceedings, 2021-June, .
Paul, D., Mukherjee, S., Pantazis, Y., Stylianou, Y. A universal multi-speaker multi-style text-to-speech via disentangled representation learning based on Rényi divergence minimization (2021) Proceedings of the Annual Conference of the International Speech Communication Association, INTERSPEECH, 5, pp. 3541-3545.
Pantazis, Y., Tselas, C., Lakiotaki, K., Lagani, V., Tsamardinos, I. Latent Feature Representations for Human Gene Expression Data Improve Phenotypic Predictions (2020) Proceedings - 2020 IEEE International Conference on Bioinformatics and Biomedicine, BIBM 2020, art. no. 9313286, pp. 2505-2512.
Vernardos, G., Tsagkatakis, G., Pantazis, Y. Quantifying the structure of strong gravitational lens potentials with uncertainty-aware deep neural networks (2020) Monthly Notices of the Royal Astronomical Society, 499 (4), pp. 5641-5652.
Velli, M.-C., Tsibidis, G.D., Mimidis, A., Skoulas, E., Pantazis, Y., Stratakis, E. Predictive modeling approaches in laser-based material processing (2020) Journal of Applied Physics, 128 (18), art. no. 018235, .
Dupuis, P., Katsoulakis, M.A., Pantazis, Y., Rey-Bellet, L. Sensitivity analysis for rare events based on rényi divergence (2020) Annals of Applied Probability, 30 (4), pp. 1507-1533.
Simantiraki, O., Cooke, M., Pantazis, Y. Effects of Spectral Tilt on Listeners' Preferences and Intelligibility (2020) ICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings, 2020-May, art. no. 9054117, pp. 6254-6258.
Paul, D., Shifas, M.P.V., Pantazis, Y., Stylianou, Y. Enhancing speech intelligibility in text-to-speech synthesis using speaking style conversion (2020) Proceedings of the Annual Conference of the International Speech Communication Association, INTERSPEECH, 2020-October, pp. 1361-1365.
Paul, D., Pantazis, Y., Stylianou, Y. Speaker conditional WaveRNN: Towards universal neural vocoder for unseen speaker and recording conditions (2020) Proceedings of the Annual Conference of the International Speech Communication Association, INTERSPEECH, 2020-October, pp. 235-239.
Karagiannaki, I., Pantazis, Y., Chatzaki, E., Tsamardinos, I. Pathway Activity Score Learning for Dimensionality Reduction of Gene Expression Data (2020) Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 12323 LNAI, pp. 246-261.
Georgoulis, E.H., Loulakis, M., Tsiourvas, A. Discrete gradient flow approximations of high dimensional evolution partial differential equations via deep neural networks (2023) Communications in Nonlinear Science and Numerical Simulation, 117, art. no. 106893, .
Kominis, I.K., Loulakis, M. Quantum advantage in biometric authentication with single photons (2022) Journal of Applied Physics, 131 (8), art. no. 084401, .
Cheliotis, D., Kontoyiannis, I., Loulakis, M., Toumpis, S. A simple network of nodes moving on the circle (2020) Random Structures and Algorithms, 57 (2), pp. 317-338.
Ntroumpogiannis, A., Giannoulis, M., Myrtakis, N., Christophides, V., Simon, E., Tsamardinos, I. A meta-level analysis of online anomaly detectors (2023) VLDB Journal, .
Tsamardinos, I. Don't lose samples to estimation (2022) Patterns, 3 (12), art. no. 100612, .
Bowler, S., Papoutsoglou, G., Karanikas, A., Tsamardinos, I., Corley, M.J., Ndhlovu, L.C. A machine learning approach utilizing DNA methylation as an accurate classifier of COVID-19 disease severity (2022) Scientific Reports, 12 (1), art. no. 17480, .
Tsamardinos, I., Charonyktakis, P., Papoutsoglou, G., Borboudakis, G., Lakiotaki, K., Zenklusen, J.C., Juhl, H., Chatzaki, E., Lagani, V. Just Add Data: automated predictive modeling for knowledge discovery and feature selection (2022) npj Precision Oncology, 6 (1), art. no. 38, .
Markaki, M., Tsamardinos, I., Langhammer, A., Lagani, V., Hveem, K., Røe, O.D. Corrigendum to “A validated clinical risk prediction model for lung cancer in smokers of all ages and exposure types: A HUNT study” [EBioMedicine 31 (2018) 36–46, (EBioMedicine (2018) 31(36-46) (S2352396418301142), (10.1016/j.ebiom.2018.03.027)) (2022) eBioMedicine, 82, art. no. 104187, .
Marshall, J.L., Peshkin, B.N., Yoshino, T., Vowinckel, J., Danielsen, H.E., Melino, G., Tsamardinos, I., Haudenschild, C., Kerr, D.J., Sampaio, C., Rha, S., FitzGerald, K.T., Holland, E.C., Gallagher, D., Garcia-Foncillas, J., Juhl, H. The Essentials of Multiomics (2022) Oncologist, 27 (4), pp. 272-284.
Karaglani, M., Panagopoulou, M., Baltsavia, I., Apalaki, P., Theodosiou, T., Iliopoulos, I., Tsamardinos, I., Chatzaki, E. Tissue‐Specific Methylation Biosignatures for Monitoring Diseases: An In Silico Approach (2022) International Journal of Molecular Sciences, 23 (6), art. no. 2959, .
Karaglani, M., Panagopoulou, M., Cheimonidi, C., Tsamardinos, I., Maltezos, E., Papanas, N., Papazoglou, D., Mastorakos, G., Chatzaki, E. Liquid Biopsy in Type 2 Diabetes Mellitus Management: Building Specific Biosignatures via Machine Learning (2022) Journal of Clinical Medicine, 11 (4), art. no. 1045, .
Biza, K., Tsamardinos, I., Triantafillou, S. Out-of-Sample Tuning for Causal Discovery (2022) IEEE Transactions on Neural Networks and Learning Systems, pp. 1-11.
Plakandaras, V., Gogas, P., Papadimitriou, T., Tsamardinos, I. Credit Card Fraud Detection with Automated Machine Learning Systems (2022) Applied Artificial Intelligence, 36 (1), art. no. 2086354, .
Karagiannaki, I., Gourlia, K., Lagani, V., Pantazis, Y., Tsamardinos, I. Learning biologically-interpretable latent representations for gene expression data: Pathway Activity Score Learning Algorithm (2022) Machine Learning, .
Tsagris, M., Papadovasilakis, Z., Lakiotaki, K., Tsamardinos, I. The γ-OMP Algorithm for Feature Selection With Application to Gene Expression Data (2022) IEEE/ACM Transactions on Computational Biology and Bioinformatics, 19 (2), pp. 1214-1224.
Papoutsoglou, G., Karaglani, M., Lagani, V., Thomson, N., Røe, O.D., Tsamardinos, I., Chatzaki, E. Automated machine learning optimizes and accelerates predictive modeling from COVID-19 high throughput datasets (2021) Scientific Reports, 11 (1), art. no. 15107, .
Borboudakis, G., Tsamardinos, I. Extending greedy feature selection algorithms to multiple solutions (2021) Data Mining and Knowledge Discovery, 35 (4), pp. 1393-1434.
Rounis, K., Makrakis, D., Papadaki, C., Monastirioti, A., Vamvakas, L., Kalbakis, K., Gourlia, K., Xanthopoulos, I., Tsamardinos, I., Mavroudis, D., Agelaki, S. Prediction of outcome in patients with non-small cell lung cancer treated with second line PD-1/PDL-1 inhibitors based on clinical parameters: Results from a prospective, single institution study (2021) PLoS ONE, 16 (6 June), art. no. e0252537, .
Nissen, L.R., Tsamardinos, I., Eskelund, K., Gradus, J.L., Andersen, S.B., Karstoft, K.-I. Forecasting military mental health in a complete sample of Danish military personnel deployed between 1992-2013 (2021) Journal of Affective Disorders, 288, pp. 167-174.
Myrtakis, N., Tsamardinos, I., Christophides, V. PROTEUS: Predictive explanation of anomalies (2021) Proceedings - International Conference on Data Engineering, 2021-April, art. no. 9458931, pp. 1967-1972.
Panagopoulou, M., Karaglani, M., Manolopoulos, V.G., Iliopoulos, I., Tsamardinos, I., Chatzaki, E. Deciphering the methylation landscape in breast cancer: Diagnostic and prognostic biosignatures through automated machine learning (2021) Cancers, 13 (7), art. no. 1677, . Planell, N., Lagani, V.,
Sebastian-Leon, P., van der Kloet, F., Ewing, E., Karathanasis, N., Urdangarin, A., Arozarena, I., Jagodic, M., Tsamardinos, I., Tarazona, S., Conesa, A., Tegner, J., Gomez-Cabrero, D. STATegra: Multi-Omics Data Integration – A Conceptual Scheme With a Bioinformatics Pipeline (2021) Frontiers in Genetics, 12, art. no. 620453, .
Marcos-Zambrano, L.J., Karaduzovic-Hadziabdic, K., Loncar Turukalo, T., Przymus, P., Trajkovik, V., Aasmets, O., Berland, M., Gruca, A., Hasic, J., Hron, K., Klammsteiner, T., Kolev, M., Lahti, L., Lopes, M.B., Moreno, V., Naskinova, I., Org, E., Paciência, I., Papoutsoglou, G., Shigdel, R., Stres, B., Vilne, B., Yousef, M., Zdravevski, E., Tsamardinos, I., Carrillo de Santa Pau, E., Claesson, M.J., Moreno-Indias, I., Truu, J., ML4Microbiome Applications of Machine Learning in Human Microbiome Studies: A Review on Feature Selection, Biomarker Identification, Disease Prediction and Treatment (2021) Frontiers in Microbiology, 12, art. no. 634511, .
Papadogiorgaki, M., Venianaki, M., Charonyktakis, P., Antonakakis, M., Tsamardinos, I., Zervakis, M.E., Sakkalis, V. Heart Rate Classification Using ECG Signal Processing and Machine Learning Methods (2021) BIBE 2021 - 21st IEEE International Conference on BioInformatics and BioEngineering, Proceedings, .
Agrapetidou, A., Charonyktakis, P., Gogas, P., Papadimitriou, T., Tsamardinos, I. An AutoML application to forecasting bank failures (2021) Applied Economics Letters, 28 (1), pp. 5-9.
Pantazis, Y., Tselas, C., Lakiotaki, K., Lagani, V., Tsamardinos, I. Latent Feature Representations for Human Gene Expression Data Improve Phenotypic Predictions (2020) Proceedings - 2020 IEEE International Conference on Bioinformatics and Biomedicine, BIBM 2020, art. no. 9313286, pp. 2505-2512.
Karaglani,
M., Gourlia, K., Tsamardinos, I., Chatzaki, E. Accurate blood-based
diagnostic biosignatures for alzheimer’s disease via automated
machine learning
(2020) Journal of Clinical Medicine, 9 (9),
art. no. 3016, pp. 1-14.
Karstoft, K.-I., Tsamardinos, I., Eskelund, K., Andersen, S.B., Nissen, L.R. Applicability of an automated model and parameter selection in the prediction of screening-level PTSD in Danish soldiers following deployment: Development study of transferable predictive models using automated machine learning (2020) JMIR Medical Informatics, 8 (7), art. no. e17119, .
Chatzaki, E., Tsamardinos, I. Somatic copy number aberrations detected in circulating tumor DNA can hold diagnostic value for early detection of hepatocellular carcinoma (2020) EBioMedicine, 57, art. no. 102851, .
Tsamardinos, I., Fanourgakis, G.S., Greasidou, E., Klontzas, E., Gkagkas, K., Froudakis, G.E. An Automated Machine Learning architecture for the accelerated prediction of Metal-Organic Frameworks performance in energy and environmental applications (2020) Microporous and Mesoporous Materials, 300, art. no. 110160, .
Verrou, K.-M., Tsamardinos, I., Papoutsoglou, G. Learning Pathway Dynamics from Single-Cell Proteomic Data: A Comparative Study (2020) Cytometry Part A, 97 (3), pp. 241-252.
Malliaraki, N., Lakiotaki, K., Vamvoukaki, R., Notas, G., Tsamardinos, I., Kampa, M., Castanas, E. Translating vitamin D transcriptomics to clinical evidence: Analysis of data in asthma and chronic obstructive pulmonary disease, followed by clinical data meta-analysis (2020) Journal of Steroid Biochemistry and Molecular Biology, 197, art. no. 105505, .
Karagiannaki, I., Pantazis, Y., Chatzaki, E., Tsamardinos, I. Pathway Activity Score Learning for Dimensionality Reduction of Gene Expression Data (2020) Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 12323 LNAI, pp. 246-261.
Xanthopoulos, I., Tsamardinos, I., Christophides, V., Simon, E., Salinger, A. Putting the human back in the AutoML loop (2020) CEUR Workshop Proceedings, 2578, .
Gomez-Cabrero, D., Tarazona, S., Ferreirós-Vidal, I., Ramirez, R.N., Company, C., Schmidt, A., Reijmers, T., Paul, V.S., Marabita, F., Rodríguez-Ubreva, J., Garcia-Gomez, A., Carroll, T., Cooper, L., Liang, Z., Dharmalingam, G., van der Kloet, F., Harms, A.C., Balzano-Nogueira, L., Lagani, V., Tsamardinos, I., Lappe, M., Maier, D., Westerhuis, J.A., Hankemeier, T., Imhof, A., Ballestar, E., Mortazavi, A., Merkenschlager, M., Tegner, J., Conesa, A. STATegra, a comprehensive multi-omics dataset of B-cell differentiation in mouse (2019) Scientific Data, 6 (1), art. no. 256, .
Lakiotaki, K., Georgakopoulos, G., Castanas, E., Røe, O.D., Borboudakis, G., Tsamardinos, I. A data driven approach reveals disease similarity on a molecular level (2019) npj Systems Biology and Applications, 5 (1), art. no. 39, .
Fernandes, S.J., Morikawa, H., Ewing, E., Ruhrmann, S., Joshi, R.N., Lagani, V., Karathanasis, N., Khademi, M., Planell, N., Schmidt, A., Tsamardinos, I., Olsson, T., Piehl, F., Kockum, I., Jagodic, M., Tegnér, J., Gomez-Cabrero, D. Non-parametric combination analysis of multiple data types enables detection of novel regulatory mechanisms in T cells of multiple sclerosis patients (2019) Scientific Reports, 9 (1), art. no. 11996, .
Røe, O.D., Markaki, M., Tsamardinos, I., Lagani, V., Nguyen, O.T.D., Pedersen, J.H., Saghir, Z., Ashraf, H.G. 'Reduced' HUNT model outperforms NLST and NELSON study criteria in predicting lung cancer in the Danish screening trial (2019) BMJ Open Respiratory Research, 6 (1), art. no. e000512, .
Papoutsoglou, G., Lagani, V., Schmidt, A., Tsirlis, K., Cabrero, D.-G., Tegnér, J., Tsamardinos, I. Challenges in the Multivariate Analysis of Mass Cytometry Data: The Effect of Randomization (2019) Cytometry Part A, 95 (11), pp. 1178-1190.
Pantazis, Y., Tsamardinos, I. A unified approach for sparse dynamical system inference from temporal measurements (2019) Bioinformatics, 35 (18), pp. 3387-3396.
Loos, M.S., Ramakrishnan, R., Vranken, W., Tsirigotaki, A., Tsare, E.-P., Zorzini, V., De Geyter, J., Yuan, B., Tsamardinos, I., Klappa, M., Schymkowitz, J., Rousseau, F., Karamanou, S., Economou, A. Structural basis of the subcellular topology landscape of Escherichia coli (2019) Frontiers in Microbiology, 10, art. no. 1670, pp. 1-22.
Panagopoulou, M., Karaglani, M., Balgkouranidou, I., Biziota, E., Koukaki, T., Karamitrousis, E., Nena, E., Tsamardinos, I., Kolios, G., Lianidou, E., Kakolyris, S., Chatzaki, E. Circulating cell-free DNA in breast cancer: size profiling, levels, and methylation patterns lead to prognostic and predictive classifiers (2019) Oncogene, 38 (18), pp. 3387-3401. https://www.scopus.com/inward/record.uri?eid=2-s2.0-85060075173&doi=10.1038%2fs41388-018-0660-y&partnerID=40&md5=a729176b072718cb4596f3a8836f4a24
Ewing, E., Kular, L., Fernandes, S.J., Karathanasis, N., Lagani, V., Ruhrmann, S., Tsamardinos, I., Tegner, J., Piehl, F., Gomez-Cabrero, D., Jagodic, M. Combining evidence from four immune cell types identifies DNA methylation patterns that implicate functionally distinct pathways during Multiple Sclerosis progression (2019) EBioMedicine, 43, pp. 411-423.
Tsamardinos, I., Borboudakis, G., Katsogridakis, P., Pratikakis, P., Christophides, V. A greedy feature selection algorithm for Big Data of high dimensionality (2019) Machine Learning, 108 (2), pp. 149-202.
Tsagris, M., Tsamardinos, I. Feature selection with the R package MXM (2019) F1000Research, 7, art. no. 1505, .
Borboudakis, G., Tsamardinos, I. Forward-backward selection with early dropping (2019) Journal of Machine Learning Research, 20, .
Kyriakis, D., Kanterakis, A., Manousaki, T., Tsakogiannis, A., Tsagris, M., Tsamardinos, I., Papaharisis, L., Chatziplis, D., Potamias, G., Tsigenopoulos, C.S. Scanning of genetic variants and genetic mapping of phenotypic traits in gilthead seabream through ddRAD sequencing (2019) Frontiers in Genetics, 10 (JUN), art. no. 675, .
Ferreirós-Vidal, I., Carroll, T., Zhang, T., Lagani, V., Ramirez, R.N., Ing-Simmons, E., Gómez-Valadés, A.G., Cooper, L., Liang, Z., Papoutsoglou, G., Dharmalingam, G., Guo, Y., Tarazona, S., Fernandes, S.J., Noori, P., Silberberg, G., Fisher, A.G., Tsamardinos, I., Mortazavi, A., Lenhard, B., Conesa, A., Tegner, J., Merkenschlager, M., Gomez-Cabrero, D. Feedforward regulation of Myc coordinates lineage-specific with housekeeping gene expression during B cell progenitor cell differentiation (2019) PLoS Biology, 17 (4), art. no. e2006506, .
Adamou, M., Antoniou, G., Greasidou, E., Lagani, V., Charonyktakis, P., Tsamardinos, I., Doyle, M. Toward Automatic Risk Assessment to Support Suicide Prevention (2019) Crisis, 40 (4), pp. 249-256.
F. Alevizos, D. Bagkavos and D. Ioannides (2019) Efficient estimation of a distribution function based on censored data. Statistics & Probability Letters 145, 359-364.G.
Borboudakis and I. Tsamardinos (2019) Forward-backward selection with early dropping. The Journal of Machine Learning Research, 20 (1), 276-314.
D. Kyriakis, A. Kanterakis, T. Manousaki, A. Tsakogiannis, M. Tsagris, I. Tsamardinos, L. Papaharisis, D. Chatziplis, G. Potamias and C. S. Tsigenopoulos. Scanning of genetic variants and genetic mapping of phenotypic traits in Gilthead sea bream through ddRAD sequencing. Frontiers in Genetics, 10:675.
P.J. Paine, S.P. Preston, M. Tsagris and A.T.A. Wood (2019) Spherical regression models with general covariates and anisotropic errors. Statistics and Computing, 1-13
Y. Pantazis, M. Tsagris and A.T.A. Wood (2019) Gaussian Asymptotic Limits for the α-transformation in the Analysis of Compositional Data. Sankhya A, 1-20.
Y. Pantazis and I. Tsamardinos (2019) A unified approach for sparse dynamical system inference from temporal measurements. Bioinformatics, btz065.
M. Tsagris (2019) Bayesian network learning with the PC algorithm: an improved and correct variation. Applied Artificial Intelligence 33(2), 101-123.
M. Tsagris, A. Alenazi, K.M. Verrou and N. Pandis (2019) Hypothesis testing for two population means: parametric or non-parametric test? Journal of Statistical Computation and Simulation, DOI: 10.1080/00949655.2019.1677659
M. Tsagris and I. Tsamardinos I. (2019). Feature selection with the R package MXM. F1000Research, 7:1505.
I. Tsamardinos, G. Borboudakis, P. Katsogridakis, P. Pratikakis and V. Christophides (2019) A greedy feature selection algorithm for Big Data of high dimensionality. Machine Learning, 108 (2), 149-202.
B. Wang, Y. Zheng, D. Fang, Y. Kamarianakis and J. Wilson (2019) Split bootstrap hierarchical modeling of antibiotics abuse in China. Statistics in Medicine, 38, 2282-2291.