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Abstract: The prediction of various phenomena through models and computation is
a necessity in numerous real life problems. The computation of singular phenomena
(interfaces, shocks, defects, cracks. . . ) arises in many complex systems and poses
many challenges. For computing such phenomena, it is natural to seek methods that
are able to detect them and to devote the necessary computational recourses to their
accurate resolution. These phenomena are very interesting for their importance and
applicability, but also for the challenge they pose in mathematical research. From a
computational perspective we need to design algorithms that are fast but also reliable.
In this paper we consider examples of such phenomena modelled by nonlinear Partial
Differential Equations and discrete microscopic systems. Since often weak solutions of
PDEs related to these problems are not unique, we demonstrate that “natural ad hoc”
computational methods might predict irrelevant solutions. Since numerical methods
perturb the mathematical model, mathematical analysis emerges as a necessary tool
which ensures that our computational methods approximate physically relevant solutions.
We discuss in more detail three nonlinear problems: (i) A problem related to design and
analysis of approximate atomistic-continuum energies to atomistic models arising in
crystalline materials (ii) A problem of cell interaction within a fibrin medium. Motivated
by experiments we demonstrate that the combination of sophisticated mathematical
modelling and numerical analysis leads to reliable computational predictions and reveals
the real mechanisms of the observed interactions (iii) A problem arising in statistical
inference of solutions to nonlinear hyperbolic systems. To compute measure valued
solutions, we propose new discrete kinetic models and we study corresponding kinetic
formulations of viscus and inviscid conservation laws.
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1 Introduction

Numerical Analysis and Scientific Computing, i.e., the Mathematics and Algorithms of
approximations, have been one of the most rapidly developing fields during the era of the
technological innovation. Novel mathematical methods and computational techniques
have set new standards in engineering and scientific computing by solving problems that
were beyond reach some years ago and by providing new challenges for technological
innovation. This progress goes hand in hand with the development of the other two
pillars of Applied Mathematics: Modeling and Analysis.

Most of the mathematical models describing nonlinear phenomena exhibit com-
plicated structures, and their study poses serious challenges for mathematical research.
Often these models describe singular phenomena (interfaces, shocks, defects, disloca-
tions, ...). Their understanding is quite involved and important since they arise in many
diverse applications. The computation of such structures poses an enormous challenge
for applied mathematicians and engineers. Starting from the work of J. von Neumann,
the non expected behaviour of standard numerical schemes intrigued mathematicians
and scientists, leading to fundamental developments in several areas of mathematics and
engineering. A key element, which distinguishes the computation of nonlinear phenom-
ena to other more traditional problems, is their sensitivity to small perturbations. Thus,
seemingly controllable errors might change completely the character of the computed
solution leading to “physically" irrelevant predictions. As it is natural, this procedure
can have catastrophic effects in algorithm design. All numerical procedures generate
errors, and thus the schemes induce their own physics into the problem. A careful
and systematic analysis, based in most of the cases on deep mathematical methods, is
required in order to provide some guarantees that we indeed compute physically relevant
approximations. Given that non-trivial nonlinear phenomena appear in many diverse
applied problems, mathematics of computational modelling appears a necessity for
reliable predictions.

In Section 2 we discuss issues related to the sensitivity of schemes in computing
nonlinear phenomena. Next we describe in more detail three nonlinear problems: In
Section 3, a problem related to design and analysis of approximate atomistic-continuum
energies to atomistic models arising in crystalline materials. In Section 4, a problem
of cell interaction within a fibrin medium. Motivated by experiments we demonstrate
that the combination of sophisticated mathematical modelling and numerical analysis
leads to reliable computational predictions and reveals the real mechanisms of the
observed interactions. In Section 5, a problem arising in statistical inference of solutions
to nonlinear hyperbolic systems. To compute measure valued solutions, we propose new
discrete kinetic models and we study corresponding kinetic formulations of viscus and
inviscid conservation laws.
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2 Sensitivity of schemes

We are interested in approximating mathematical models described by differential
equations. Our aim is to design schemes which lead to fast and reliable algorithms.
Typically error estimates of a priori or a posteriori type provide mathematical guarantees
including among others the convergence to the exact solution. Quite often, the correct
asymptotic behaviour is not sufficient, and we need to test our approximating methods
against other criteria. A key issue emerges when we require for our schemes to preserve
key structural properties of the problem. In particular, for non-linear phenomena, this
property is quite important, and one of the key elements in scheme design. Preserving
structural properties is not trivial as the following elementary example shows: Let
𝐴 ∈ R𝑚,𝑚 be an antisymmetric matrix, 𝐴𝑇 = −𝐴. Consider the initial value problem

𝑦′(𝑡) = 𝐴𝑦(𝑡), 𝑡 ≥ 0, 𝑦(0) = 𝑦0.

Then the norm ‖𝑦(·)‖ is constant in time, ‖𝑦(𝑡)‖ = ‖𝑦(0)‖. This property at certain
more involved applications is related to “energy conservation." We would like to pre-
serve this property at the computational level. However, although both Backward Euler,
𝑦𝑛+1 − 𝑦𝑛 = ℎ𝐴𝑦𝑛+1, and Trapezoidal Methods, 𝑦𝑛+1 − 𝑦𝑛 = ℎ

2 𝐴𝑦𝑛+1 + ℎ
2 𝐴𝑦𝑛,

are natural approximating schemes, only the second one satisfies the discrete analog
of the energy conservation, as a simple calculation shows. More generally, one can
observe that preserving structural properties often serves as a useful design principle of
the computational algorithm.

Nonlinear problems with non unique weak solutions. Consider the nonlinear evolution
PDE written in abstract form

𝑢𝑡(𝑡) + 𝐴(𝑢(𝑡)) = 0.

This is a nonlinear evolution PDE such as, e.g., Conservation Laws (CL), Hamilton
Jacobi equations (HJ) and equations describing phase separation. For several such prob-
lems one is interested in solutions with reduced smoothness. Such weak solutions are
appropriately defined and there is a rich mathematical theory related to their study.
Often, such solutions are not unique and one has to impose additional selection criteria
which hopefully pick the physical relevant solution (CL: entropy solution, HJ: viscosity
solution, geometric laws for propagating interfaces). As far as the mathematical justifi-
cation is concerned, nonlinear PDE theory provides partial answers - (CL: Kruzkov’s
theory for the scalar case, HJ: theory of viscosity solutions of Crandall-Lions, measure
valued solutions ....) Although complete theories are available for a limited number of
interesting problems, these theories provide important insight and highlight subtle points
in the design of physically relevant schemes. As we shall see, the design of appropriate
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computational schemes for such problems is quite delicate. One of the main obstacles
one has to overcome is the possibility the numerical method to pick at the limit a weak
solution which is not however the physically relevant one. A way out is the careful
design based on preserving structural properties at the discrete level.
A typical example: Scalar Conservation Laws. Consider the nonlinear equation

𝑢𝑡(𝑥, 𝑡) + div𝐹 (𝑢(𝑥, 𝑡)) = 0, 𝑥 ∈ R𝑑, 𝑡 > 0. (2.1)

Weak solutions are defined through a variational formulation and admit solutions which
are even discontinuous. Among them uniqueness is guaranteed by imposing an infinite
number of additional variational inequalities: The unique entropy solution satisfies

𝜂(𝑢)𝑡 + div𝑄(𝑢) ≤ 0, in 𝒟′.

Here, 𝜂 is convex and 𝜂, 𝑄 an entropy entropy-flux pair, [16]. An alternative characterisa-
tion of the entropy solution emerges as the limit of viscosity approximations (“viscosity
solution") 𝑢𝜖 → 𝑢 where

𝑢𝜖
𝑡(𝑥, 𝑡) + div𝐹 (𝑢𝜖(𝑥, 𝑡)) = 𝜖Δ𝑢𝜖(𝑥, 𝑡), 𝑥 ∈ R𝑑, 𝑡 > 0. (2.2)

This interpretation of the entropy solution has subtle consequences in the scheme
design. Firstly, it hints that successful approximations should include a form of artificial
diffusion, [60]. On the other hand, since not all perturbations of (2.1) lead to the entropy
solution, one should be rather sure that the scheme does not implicitly induce unwanted
perturbations, since, in general, different regularisations might pick different solutions
at the limit. In fact, “reasonable" schemes do not perform always as we expect. The
main reason is that each scheme approximating (2.1) is modelled by a PDE of the form

𝑣ℎ
𝑡 (𝑡) + div𝐹 (𝑣ℎ(𝑡)) = 𝐵ℎ(ℎ, 𝑣ℎ(𝑡)),

where 𝐵ℎ(ℎ, 𝑣ℎ(𝑡)) is a differential operator acting on 𝑣ℎ which is not always easy to
write explicitely. To fix ideas, consider the one dimensional conservation law

𝑢𝑡 + 𝐹 (𝑢)𝑥 = 0.

A quite natural discretisation scheme is the “central scheme" (discretisation in 𝑥 only)

𝑑

𝑑𝑡
𝑢𝑖(𝑡) = − 1

2ℎ
(𝑔𝑖+ 1

2
− 𝑔𝑖− 1

2
) = −𝐹 (𝑢𝑖+1) − 𝐹 (𝑢𝑖−1)

2ℎ
.

This scheme is a second order approximation of the conservation law and third order
approximation of

𝑢ℎ
𝑡 + 𝐹 (𝑢ℎ)𝑥 = 𝛼ℎ2𝐹 (𝑢ℎ)𝑥𝑥𝑥.

Thus explaining the oscillatory behaviour, due to dispersive perturbation, see Fig 1.
For the very interesting limit dynamics of such schemes and dispersive perturbations,
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see [59, 33]. In Hou and Lax [33] a very interesting historical account regarding the
pioneering contributions of J. von Neumann to the birth of computational fluid dynamics
is included. For related works regarding the development of the mathematical theory of
small dispersion limits, see [36, 58, 37]. In Fig. 2 one can find another example of scheme
sensitivity in computational fluid dynamics, [6], where the discrete divergence free
condition in finite element Navier-Stokes solvers is destroyed due to mesh refinement.
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Fig. 1: An oscillatory central scheme (A) and a shock capturing upwind scheme (B) for
Burgers equation. Two schemes approximating different weak solutions in the case of non-
convex flux function (C).
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Fig. 2: Severe pressure pollution in Navier-Stokes solvers: von Karman vortex shedding with
random mesh refinement at several places. Pressure jumps at places where you refine.
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Numerical issues on PDE/multiscale Energy Minimisation. Another important class of
nonlinear problems with non unique weak solutions are arising in minimisation problems.
Issues, such as computation of phase transitions and other singular or nearly singular phe-
nomena appear here as well. The mathematics of these quite diverse problems are very
rich, but still, provide understanding only in limiting cases, [4]. From the computational
perspective, although numerical optimisation is quite advanced, the numerical analysis
of PDE and multi-scale energy minimisation is not quite developed and many questions
and problems remain unexplored. Consider the nonlinear minimization problem

find a local minimizer 𝑣 in 𝒱 of :

ℰ(𝑣) ,

where usually ℰ is in general non-convex, ℰ has more than one critical points and ℰ
is often singularly perturbed (including regularisation terms). In atomistic models ℰ is
discrete but includes long range interactions and minimizers depend on the space 𝒱
and its properties. The approximate energy minimisation problem is posed over finite
dimensional spaces 𝑉ℎ, and approximating energy functionals ℰℎ :

find a local minimizer 𝑣 in 𝒱ℎ of :

ℰℎ(𝑣) .

Many questions arise, since for example the relationship between ℰℎ and ℰ might not
be always clear. In particular, questions such as what are the appropriate choices of
the approximate energies ℰℎ emerge in several applications. Similarly, the relationship
between 𝒱ℎ and 𝒱 is quite subtle, as for example it might fall into unrealistic approximate
minimisers due to Lavrentiev phenomenon, see Ball and Knowles, [5]. An indicative
example reflecting the sensitivity of discretisation methods, and the very different nature
of the resulting approximations is provided by the next simple scalar problem of phase
separation. The energy functional is

ℰ𝜀(𝑢) =
∫︁
Ω

[︁
𝜀 |∇𝑢|2 + 1

𝜀
(𝑢2 − 1)2

]︁
𝑑𝑥 .

When the domain Ω is convex the minimisers are two constant states 𝑢 = 1 or 𝑢 = −1.

In the case of non-convex Ω, several interesting solutions emerge, e.g., [35]. However,
even in the simplest case the computation of minimisers is far from straightforward.
Unphysical interfaces emerge, and the computational solutions are quite sensitive on
mesh discretisation parameters, see Figure 3.
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Fig. 3: Three entirely different approximate solutions with mesh resolution ℎ, ℎ/2.9, and
ℎ/3.3 respectively.

3 Consistent atomistic-continuum energies

Most real world systems include a description at several scales, i.e., they are multi-scale
in nature. Our understanding in models from physics is by far the best, however, even
there, many issues remain mathematically unexplored or inaccessible by computational
means. In several complex applications involving multiple scales, notably in materials
science and nanotechnology, the closure laws are either not known, or hold in restrictive
situations. Even when effective laws are known, understanding the underlying mech-
anisms and the rigorous passage across scales up to the continuum level (quantum,
atomistic, kinetic, continuum) constitutes a key challenge in applied mathematics. From
a computational prespective, the huge number of degrees of freedom of the microscopic
problems, as well as, the possible singular behaviour of the underlying phenomena
constitute the main bottleneck for important developments. Usually, effective theories
fail when singular phenomena appear, e.g., the passage from atomistic to continuum
is typically valid only when certain smoothness criteria are met. A way to overcome
this problem at a computational level is to use hybrid models across scales, i.e., to use
different models in different areas of the computational domain. We would like to study
models where the microscopic model is kept in the areas of singular behaviour and
macroscopic models are used in the areas of smoothness. Numerical Analysis motivates
the design of new consistent models which accurately link the two scales of the problem.
In this section we will see how one can address this problem when coupling between
atomistic and continuum descriptions is chosen.

Atomistic Models . We consider a simple scaled two dimensional lattice 𝜀Z2 = {𝑥ℓ =
(𝑥ℓ1 , . . . , 𝑥ℓ𝑑

) = 𝜀 ℓ, ℓ ∈ Z2}. We shall assume that atoms are placed initially at the
lattice points 𝑥ℓ and the interatomic distance is 𝜀 . Without being very precise about the
notational conventions we will consider discrete periodic functions on Z2 defined over a
‘periodic domain’ ℒ and Ωdiscr := 𝜀Z2 ∩ Ω, ℒ := Z2 ∩ 1

𝜀 Ω. We consider atomistic



8 I. Gkanis, G. Grekas, E. Karnessis and C. G. Makridakis

x! x!+e1
x!+η1e1

x!+e2

x!+η2e2

x!+e2

x!+η

•

•

1

Fig. 4: Two dimensional lattice.

deformations

𝑦ℓ = 𝑦(𝑥ℓ) , ℓ ∈ ℒ of the form

𝑦ℓ = 𝐹𝑥ℓ + 𝑣ℓ, with 𝑣ℓ = 𝑣(𝑥ℓ) periodic with respect to ℒ .

The corresponding spaces for 𝑦 and 𝑣 are denoted by 𝒳 and 𝒱 :

𝒳 = {𝑦 : ℒ → R2, 𝑦ℓ = 𝐹𝑥ℓ + 𝑣ℓ, 𝑣 ∈ 𝒱} ,

𝒱 = {𝑢 : ℒ → R2, 𝑢ℓ = 𝑢(𝑥ℓ) periodic with respect to ℒ} .

For functions 𝑦, 𝑣 : ℒ → R2 we define the product ⟨ 𝑦, 𝑣 ⟩𝜀 := 𝜀2∑︀
ℓ∈ℒ 𝑦ℓ 𝑣ℓ .

The energy of a deformed crystal is described through given potentials accounting for
interactions between atoms. We consider the atomistic potential

Φ𝑎(𝑦) = 𝜀2
∑︁
ℓ∈ℒ

∑︁
𝜂∈𝑅

𝜑𝜂 (𝐷𝜂𝑦ℓ),

where 𝑅 is the set of interaction vectors. and

𝐷𝜂𝑦ℓ =
𝑦ℓ+𝜂 − 𝑦ℓ

𝜀
, ℓ, ℓ + 𝜂 ∈ ℒ.

Notice that the atomistic potential is a highly nonlinear function involving “discrete
derivatives". For a given field of external forces 𝑓 : ℒ → R2 the atomistic problem
reads:

find a local minimizer 𝑦𝑎 in 𝒳 of :

Φ𝑎(𝑦𝑎) − ⟨𝑓, 𝑦𝑎⟩𝜀 .

Notice that as the atomistic problem is a discrete energy minimization problem, its
Euler-Lagrange equations will give rise to a “nonlinear finite difference" system. In fact,
if such a minimizer exists, then

⟨𝐷Φ𝑎(𝑦𝑎), 𝑣⟩𝜀 = ⟨𝑓, 𝑣⟩𝜀 , for all 𝑣 ∈ 𝒱 .
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Here,
⟨𝐷Φ𝑎(𝑦), 𝑣⟩𝜀 = 𝜀𝑑

∑︁
ℓ∈ℒ

∑︁
𝜂∈𝑅

∇𝜁𝜑𝜂 (𝐷𝜂𝑦ℓ) · 𝐷𝜂𝑣ℓ .

Fig. 5: Macro-scale : continuum models – Partial Differential Equations, Meso-scopic models:
Kinetic models, Meso-scopic models : coarse grained atomistic models.

A continuum model for smooth deformations: the Cauchy-Born approximation. One
would like to approximate the atomistic model by a continuum energy minimisation
problem. Notice that we adopt a reverse point of view compared to the standard one
in numerical analysis for PDEs, in the sense that the atomistic problem is the exact
problem (discrete difference scheme) and we aim to find a continuum approximation (a
PDE) to the atomistic model. This is not a trivial task, and in fact, such approximations
are meaningful only when smooth deformations are considered. When smoothness is
lost, e.g., when defects or cracks appear, the continuum modelling becomes quite subtle
and various approaches proposed so far are still under debate. Notice, however, that we
intend to use the continuum model only locally at smooth areas. To this end, we define
the Cauchy-Born stored energy function, [24], as

𝑊 (𝐹 ) = 𝑊𝐶𝐵(𝐹 ) =
∑︁
𝜂∈𝑅

𝜑𝜂 (𝐹 𝜂).

The Cauchy-Born energy minimisation problem is

find a local minimizer 𝑦𝐶𝐵 in 𝑋 of :

Φ𝐶𝐵(𝑦) − ⟨𝑓, 𝑦𝐶𝐵⟩ =
∫︁
Ω

𝑊 (∇𝑦𝐶𝐵) − ⟨𝑓, 𝑦𝐶𝐵⟩ .
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Here

𝑋 = {𝑦 : Ω → R𝑑, 𝑦(𝑥) = 𝐹𝑥 + 𝑣(𝑥), 𝑣 ∈ 𝑉 } ,

𝑉 = {𝑢 : Ω → R𝑑, 𝑢 ∈ 𝑊 𝑘,𝑝(Ω, R𝑑) ∩ 𝑊 1,𝑝
# (Ω, R𝑑),

∫︁
Ω

𝑢𝑑𝑥 = 0} .

The Euler-Lagrange equations are a system of nonlinear PDEs:

⟨𝐷Φ𝐶𝐵(𝑦), 𝑣⟩ =
∫︁
Ω

𝑆𝑖𝛼(∇𝑦(𝑥)) 𝜕𝛼𝑣𝑖(𝑥) 𝑑𝑥 = ⟨𝑓, 𝑣⟩ , 𝑣 ∈ 𝑉 ,

where the stress tensor is defined as 𝑆 :=
{︁

𝜕𝑊 (𝐹 )
𝜕𝐹𝑖𝛼

}︁
𝑖𝛼

. Some remarks on the re-

lation between the atomistic and continuum CB models are in order. As mentioned,
the continuum model approximates the atomistic model only when deformations are
sufficiently smooth, however, the mathematical justification of this approximation is
far from straightforward. Key technical difficulty is due to the fact that the interatomic
potentials allow for long range interactions as opposed to interactions only of next
neighbours (only adjacent atoms interact). The main results based on different notions
of consistency (the term is borrowed from standard numerical analysis terminology)
start with the Variational Consistency:

𝒞𝑉 (𝑦) := sup
{︁

|⟨𝐷Φ𝑎(𝑦), 𝑣⟩𝜀 − ⟨𝐷Φ𝐶𝐵(𝑦), 𝑣⟩| :

𝑣 ∈ 𝒱 with ‖𝑣‖𝑊 1,𝑝(Ω) = 1
}︁

,

where in the last relation 𝑦 is any smooth function. We shall refer to 𝒞𝑉 (𝑦) as the
variational consistency error. Similarly we define the Energy Consistency error by

𝒞ℰ(𝑦) := |Φ𝑎(𝑦) − Φ𝐶𝐵(𝑦)|.

We aim to estimate both 𝒞𝑉 (𝑦) and 𝒞ℰ(𝑦) in terms of powers of 𝜀, yielding two consis-
tency criteria, one for the energies and one for the first variations. Consistency errors
account, as in Numerical Analysis, to the extent to which an exact smooth solution
fails to satisfy the approximating scheme. Given that the stability of the scheme is
satisfactory, usually the consistency error determines the order and therefore the quality
of the approximation. This includes the case where consistency errors do not tend to
zero as the mesh parameter (here represented by the the interatomic distance 𝜀) does. In
this case it is well known that convergence is lost.

Theorem 3.1 (Energy consistency). Let 𝑦 be a smooth function. Then the atomistic
energy Φ𝑎(𝑦) is a second order approximation of the continuum Cauchy-Born energy
Φ𝐶𝐵(𝑦) in the sense that there exists a constant 𝑀𝐸 = 𝑀𝐸(𝑦),⃒⃒⃒

Φ𝑎(𝑦) − Φ𝐶𝐵(𝑦)
⃒⃒⃒

≤ 𝑀𝐸 𝜀2.
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The above result was obtained by Blanc, LeBris & Lions, [9]; a similar problem in the
case where we include surface energies was addressed in [53]. We have a similar bound
for the first variations given in the following theorem.

Theorem 3.2 (Variational consistency). Let 𝑦 be a smooth function; then, for any 𝑣 ∈
Vℎ, the continuum Cauchy–Born variation ⟨𝐷Φ𝐶𝐵(𝑦), 𝑣⟩ is a second-order approxi-
mation to the atomistic variation ⟨𝐷Φ𝑎(𝑦), 𝑣⟩𝜀 in the sense that there exists a constant
𝑀𝑉 = 𝑀𝑉 (𝑦, 𝑝), 1 ≤ 𝑝 ≤ ∞, independent of 𝑣, such that⃒⃒⃒

⟨𝐷Φ𝐶𝐵(𝑦), 𝑣⟩ − ⟨𝐷Φ𝑎(𝑦), 𝑣⟩𝜀

⃒⃒⃒
≤ 𝑀𝑉 𝜀2 |𝑣|𝑊 1,𝑝(Ω).

This result was first stated by E. & Ming, [23]. The first systematic proof was given in
[46] by introducing a new finite element consistency analysis appropriate for atomistic
problems, see also [48] for an alternative approach.

Coupled Atomistic-Continuum methods. The idea of coupling energies, pioneered in,
e.g., [56, 13], is at the heart of designing principles of the multiscale methods, i.e., of
computational methods which are able to tackle models at different scales simultaneously.
However, initial attempts to couple the local energies, led to artefacts and computational
inconsistencies. The important unresolved issue is the mechanism for coupling the
atomistic and the continuum model, specifically, the “interface conditions" needed
for the exchange of information between the two scales. Since the atomistic models
involve long range interactions, and thus nonlocal effects, this is a highly non-trivial
task. The term “ghost-forces" was used —initially in the engineering literature— for the
unphysical behaviour observed on the interface of these two regions. This is essentially
a manifestation of the loss of consistency for the first variations, i.e., coupled energies
had 𝒞𝑉 (𝑦) = 𝑂(1) while 𝒞𝐸(𝑦) was at least 𝑂(𝜀) (with the obvious modifications in
the definitions).

Thus the following consistency criterion seemed important: the energy ℰ is said to
be free of ghost forces if

⟨𝐷ℰ(𝑦𝐹 ), 𝑣⟩ = 0, 𝑦𝐹 (𝑥) = 𝐹𝑥 , (3.1)

for all appropriate variations 𝑣 : Ω̄ ∩ 𝐿 → R2 such that 𝑣ℓ = 0 outside a compact
set. This requirement has more than one interpretation. Firstly, it is clear that affine
deformations are energy minimisers for both the atomistic and the Cauchy-Born model,
and thus it is quite natural to require that the same property is preserved for coupling
energies. The requirement (3.1) is related to variational consistency. The analysis in [34]
shows that when (3.1) fails, 𝒞𝑉 (𝑦) = 𝑂(1), and vice-versa. When we design a method
aiming at optimising the rate of 𝒞𝑉 (𝑦), the coupled energies satisfy (3.1). We claim that,
as it is the case for all important structural properties, it is not a good idea to ignore this
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Fig. 6: Ghost forces for the Laplace equation, the domain is divided in two, using fine mesh
in Ω1 and coarse mesh in Ω2.: inconsistent coupling (left) and consistent coupling (right).
The two solutions differ more than 20% even away from the interface, [45].

requirement at the design level. Variational inconsistency for coupled energies might
have catastrophic effects even for linear problems as the example in Fig. 6 highlights.
Next we describe the design principles of coupling methods which will satisfy (3.1). We
define Ω𝑎 as the atomistic region, Ω* as the atomistic Cauchy-Born region and Γ as the
interface between Ω𝑎 and Ω* which has no thickness. Also, Ω is the whole region being
examined which contains Ω𝑎, Ω* and Γ such that

Ω̄ = Ω̄𝑎 ∪ Ω̄*, Γ = Ω̄𝑎 ∩ Ω̄*.

For a fixed 𝜂 ∈ 𝑅, a bond can be defined as the line segment 𝑏ℓ = {𝑥 ∈ R2 : 𝑥 =
ℓ + 𝑡𝜂, 0 < 𝑡 < 1}. A bond volume 𝐵ℓ, 𝜂 that corresponds to 𝑏ℓ is the interior part of a
parallelogram that has a diagonal 𝑏ℓ, i.e.,

𝐵ℓ, 𝜂 is an open quadrilateral that has vertices 𝑥ℓ, 𝑥ℓ+𝜂1𝑒1 , 𝑥ℓ+𝜂2𝑒2 , 𝑥ℓ+𝜂 .

The following lemma is quite useful.

Lemma 3.3. Let 𝑣 ∈ Q1(𝐵ℓ, 𝜂), then

𝜀2 𝐷𝜂𝑣ℓ = 1
𝜂1 𝜂2

∫︁
𝐵ℓ, 𝜂

∇𝑣(𝑥)𝜂 𝑑𝑥 .

We highlight how the discontinuous coupled method can be designed. The method,
introduced in [43], allows flexibility on the construction of the underlying meshes and
the computation of the energy at the interface is not involved. To retain consistency the
interfacial energies should include terms accounting for the possible discontinuity of the
underlying functions, and hence the name discontinuous coupling.

The design of the method is done with respect to the bond volumes 𝐵ℓ,𝜂. Specif-
ically, we consider three cases which are determined by the location of bond volume
𝐵ℓ,𝜂 with respect to the interface: (a) 𝐵ℓ,𝜂 ⊂ Ω𝑎: The closure of bond volume 𝐵ℓ,𝜂
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is contained in Ω𝑎, in this case the atomistic energy is used. (b) 𝐵ℓ,𝜂 ⊂ Ω*: The bond
volume 𝐵ℓ,𝜂 is contained in region Ω*, in this case the continuum energy is used. (c)
𝐵ℓ,𝜂 ∈ 𝐵Γ if it intersects the interface, i.e 𝐵ℓ,𝜂 ∩ Γ ̸= ∅. In the last case we need to
design new energies which will account for seamless communication between the two
different models. To this end, the contribution to the energy which corresponds to (a),
for a fixed 𝜂, is:

𝐸𝑎
Ω𝑎,𝜂{𝑦} = 𝜀2

∑︁
ℓ∈ℒ

𝐵ℓ,𝜂⊂Ω𝑎

𝜑𝜂(𝐷𝜂𝑦ℓ) .

For a fixed 𝜂, the contribution to the energy which corresponds to the CB region is

𝐸𝑎,𝑐𝑏
Ω*,𝜂{𝑦} =

∫︁
Ω*

𝜑𝜂(∇𝑦(𝑥)𝜂)𝑑𝑥

where for technical reasons we consider 𝑦 to be the piecewise bilinear function at the lat-
tice cells, for the general finite element decomposition of the continuum region see [43].
Without being very specific, to define the interface energy we need to consider piecewise
polynomial functions 𝑦ℓ,𝜂 defined on 𝐵ℓ,𝜂 as follows: 𝑦ℓ,𝜂 ∈ Q1(𝐾) interpolating {𝑦ℓ}
for all atomistic cells 𝐾 ⊂ Ω* . In the remaining part of the bond volume (contained in
Ω𝑎), 𝑦ℓ,𝜂 is defined by interpolating lattice values, see [43, 34]. Then it follows that this
function is continuous on 𝐵ℓ,𝜂∖Γ and possibly discontinuous on the interface Γ . Our
work identifies this discontinuity as the source for the loss of the variational consistency.
Based on these observations, the energy for the bond volumes intersecting the interface
can be defined as

𝐸𝐷
Γ,𝜂{𝑦} =

∑︁
ℓ∈ℒ

𝐵ℓ,𝜂∈𝐵Γ

1
|𝜂1𝜂2|

[︁ ∫︁
𝐵ℓ,𝜂

𝜒Ω𝑎
𝜑𝜂(∇𝑦ℓ,𝜂𝜂) 𝑑𝑥

−
∫︁

𝐵ℓ,𝜂∩Γ

∇𝜁𝜑({{∇𝑦ℓ,𝜂𝜂}}) ·[[𝑦ℓ,𝜂𝜂]] 𝑑𝑆
]︁
. (3.2)

Here, [[𝑤𝜂]] denotes the jump and {{𝑤}} denotes the average of a possibly discontinuous
function on the interface

[[𝑤𝜂]] := (𝜈Ω𝑎
· 𝜂) 𝑤− + (𝜈Ω* · 𝜂) 𝑤+, {{𝑤}} := 1

2{𝑤− + 𝑤+} , (3.3)

where 𝑤− is the limit taken from Ω𝑎 and 𝑤+ is the limit taken from Ω*. Also, 𝜈Ω𝑎

and 𝜈Ω* are the respective exterior normal unit vectors, that satisfy 𝜈Ω𝑎
= −𝜈Ω* on Γ.

The last term in (3.2) is added to account for the loss of continuity of the underlying
functions and its choice is related to the design of Discontinuous Galerkin finite element
methods, see the next section for related problems at the continuum level. For such
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methods, it is essential to add penalty terms for stability reasons. Finally, for a penalty
parameter coefficient 𝛾𝑃 > 0 the interfacial energy takes the form,

�̃�𝐷
Γ,𝜂{𝑦} = 𝐸𝐷

Γ,𝜂{𝑦} + 𝛾𝑃

𝜀

∑︁
ℓ∈ℒ

𝐵ℓ,𝜂∈𝐵Γ

∫︁
𝐵ℓ,𝜂∩Γ

[[𝑦ℓ,𝜂𝜂]]2 𝑑𝑆 . (3.4)

The total energy is defined as

ℰ𝐷{𝑦} =
∑︁
𝜂∈𝑅

ℰ 𝜂{𝑦},

where
ℰ 𝜂{𝑦} = 𝐸𝑎

Ω𝑎,𝜂{𝑦} + 𝐸𝑎,𝑐𝑏
Ω*,𝜂{𝑦} + �̃�Γ,𝜂{𝑦} .

Despite the fact that we allow discontinuities, the total energy ℰ𝐷 =
∑︀

𝜂∈𝑅 ℰ 𝜂 is
consistent (ghost-force free) [43]. Designing such consistent coupled energies is one of
the few well defined problems in multiscale modelling. The methodology introduced
in [43] leads to the systematic design of ghost-force-free couplings in two and three
dimensions for pair potentials. A previous breakthrough is due to Shapeev [55] who
introduced the first consistent methods in two dimensions, see also [40, 42]. The methods
introduced in [43] resolved other open algorithmic design issues as well, such as the
construction of consistent couplings of arbitrary high-order of accuracy.

The work [34] is devoted to the analysis of the discontinuous interface coupling
methods. It contains the analysis of the energy consistency of an altered version of the
above coupled method as well. The design of the new methods introduced in [34] was
motivated by the error analysis. The key idea is that without specifying the interface
terms, the analysis identifies two types of terms: (a) terms which are 𝑂(𝜀2) and vanish
when 𝑦 = 𝑦𝐹 and (b) terms which are 𝑂(1) even for 𝑦 = 𝑦𝐹 . However, the terms
in (b) are explicit and they have an appropriate structure which motivates the correct
introduction of interface energy terms in order to eliminate their effect. The proof that the
coupled energy introduced above is a second order approximation to the Cauchy-Born
energy was proved in [34] as follows

Theorem 3.4 (Energy Consistency). Let 𝑦 be a smooth function, and ℰ𝐷{𝑦} be the
coupled energy, then there exists a constant 𝑀𝐸 = 𝑀𝐸(𝑦), such that

|ℰ𝐷{𝑦} − Φ𝐶𝐵(𝑦)| ≤ 𝑀𝐸𝜀2.

Further, the variational consistency error for the coupled method is bounded by (𝜀2 +
𝜀2− 1

𝑝 ) in the discrete 𝑊 −1,𝑝 norm, as follows

Theorem 3.5. Let 𝑦 be a smooth function; then the atomistic variation ⟨𝐷Φ𝐶𝐵(𝑦), 𝑣⟩
approximates the variation of the coupled discontinuous method ⟨𝐷ℰ𝐷{𝑦}, 𝑣⟩ in the
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sense that there exists a constant 𝑀𝑉 = 𝑀𝑉 (𝑦, 𝑝), 1 ≤ 𝑝 ≤ ∞, independent of 𝑣, such
that ⃒⃒⃒

⟨𝐷ℰ𝐷{𝑦}, 𝑣⟩ − ⟨𝐷Φ𝐶𝐵(𝑦), 𝑣⟩𝜀

⃒⃒⃒
≤ 𝑀𝑉 (𝜀2 + 𝜀2−1/𝑝) |𝑣|𝑊 1,𝑝(Ω).

4 A cell interaction problem and phase
transitions

Aiming at discovering the mechanisms of cell interactions within a fibrin medium we
would like to approximate a variational problem involving a non strict rank-one convex
strain energy function, regularised by a higher order term. The strain energy function
models the mechanical response of the extracellular space (ECM). Typical biological
tissue are composed of cells surrounded by the extracellular space, which is mainly
composed of collagen fibers. Cells are attached onto the ECM fibers through proteins
known as adhesion molecules. Through these molecules, cells can detect mechanical
alterations to their microenvironment and can pull the surrounding fibers. Cells typically
deform the matrix by actively contracting. These tractions can be high enough to create
distinct spatial patterns [32, 57, 47], i.e. tissue morphogenesis. In [31] the theory of
non-linear elasticity has been used to define an appropriate strain energy which models
the cell interactions as phase transitions. To this end, consider the problem of minimizing
the total potential energy

Ψ[𝑢] =
∫︁
Ω

𝑊 (∇𝑢(𝑥)) + 𝜀2

2 |∇∇𝑢(𝑥)|2, (4.1)

where 𝑢 ∈ 𝐻2(Ω)2 and 𝑢 satisfies some appropriate boundary conditions, 𝜀 > 0
is a fixed real number and Ω ⊂ R2 is a two dimensional open connected set with
Lipschitz boundary. We assume the following upper and lower bounds for the strain
energy function 𝑊 :

𝑐0
(︀
|1 + ∇𝑢|2 − 𝑐1

)︀
≤ 𝑊 (∇𝑢) ≤ 𝑐2 (|1 + ∇𝑢|𝑚 + 𝑐3) , (4.2)

for some 𝑚 ∈ N and 𝑐0, 𝑐1, 𝑐2, 𝑐3 are positive constants. We encode boundary conditions
in the following set:

A(Ω) = {𝑢 ∈ 𝐻2(Ω)2 : 𝑢 = 𝑔, for 𝑔 ∈ 𝐻3(Ω)} (4.3)

where 𝑢 = 𝑔 on 𝜕Ω in the sense of trace.
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Now, the minimization problem can be defined as:

inf{Ψ[𝑢] : 𝑢 ∈ A(Ω)}. (4.4)

Next assume for simplicity that the domain is polygonal and, henceforth, 𝑇ℎ denotes
the shape regular triangulation of the domain with mesh size ℎ. To approximate the
solution of the minimization problem (4.4) we use the discrete space of continuous
piecewise polynomial functions over 𝑇ℎ,

𝑉 𝑞
ℎ (Ω) = {𝑣 ∈ 𝐶0(Ω) : 𝑣

⃒⃒
𝐾

∈ P𝑞(𝐾), 𝐾 ∈ 𝑇ℎ}, 𝑞 ∈ N. (4.5)

The set of the internal mesh edges will be called 𝐸𝑖
ℎ and the length of an edge 𝑒 is

denoted by ℎ𝑒.
A direct discretization of the minimization problem (4.4) would require an approxi-

mation space, a subspace of 𝐻2(Ω) × 𝐻2(Ω). This means that, for conforming finite
elements, we would require 𝐶1 continuity at the interfaces, i.e. across element internal
boundaries. It is well known that the construction of elements that ensure 𝐶1 continuity
is quite complex. Here we adopt to our problem an alternative approach based on the
discontinuous Galerkin formulation. Our approximations will be sought on 𝑉 𝑞

ℎ (Ω)2;
however, the energy functional should be modified to account for possible discontinuities
of normal derivatives at the element faces. The appropriate modification of the energy
functional proposed below is motivated by the analysis in [43]; the resulting bilinear
form of the biharmonic operator obtained via the first variation, will be the form of the
𝐶0 discontinuous Galerkin method for the linear biharmonic problem, introduced in
[11].

The discretized functional for 𝑢ℎ ∈ 𝑉 𝑞
ℎ (Ω)2 and 𝑞 ≥ 2 has the form:

Ψℎ[𝑢ℎ] =
∫︁
Ω

[𝑊 (∇𝑢ℎ) + 𝜀2

(︃
1
2
∑︁

𝐾∈𝑇ℎ

∫︁
𝐾

|∇∇𝑢ℎ|2

−
∑︁

𝑒∈𝐸𝑖
ℎ

[︁ ∫︁
𝑒

{{∇∇𝑢ℎ}} · [[∇𝑢ℎ ⊗ 𝑛𝑒]] + 𝛼

ℎ𝑒

∫︁
𝑒

|[[∇𝑢ℎ]]|2
]︁)︃

.

(4.6)

Note that the higher order terms, terms multiplied by 𝜀, have also a penalty parameter 𝛼,
which is a stabilisation parameter. From now on we assume that 𝛼 is large enough, see
[30] for details. Similarly, to the continuous problem we encode boundary conditions in
the following set:

A𝑞
ℎ(Ω) = {𝑢ℎ ∈ 𝑉 𝑞

ℎ (Ω)2 : 𝑢ℎ

⃒⃒
𝜕Ω = 𝑔ℎ

⃒⃒
𝜕Ω}, (4.7)

where 𝑔ℎ → 𝑔 in 𝐿2(𝜕Ω)2 as ℎ → 0, 𝑔 is given in (4.3). So, we have to solve the
corresponding discrete minimization problem

inf{Ψℎ[𝑢ℎ] : 𝑢ℎ ∈ A𝑞
ℎ(Ω)}. (4.8)
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A computational result, adopting the above numerical scheme, can be seen in Figure
7, where the evolving phase transitions are regularised by the parameter 𝜀. The above
numerical scheme is used for the detailed computational experiments in [31]. The
agreement of the computational model to a series of experiments is remarkable and
reveals the real mechanisms of cell interactions, see [31] for details.

It is natural therefore to mathematically justify the appropriateness of this discreti-
sation scheme compared to (4.1). To this end, we will use the theory of Γ-convergence
to compare the continuous and the discretised energies for fixed 𝜀 and ℎ → 0 . Here
we study the convergence of discrete almost absolute minimizers. Specifically, let (𝑢ℎ)
be a sequence of almost absolute minimizers for the discretized energy functional Ψℎ,
namely

Ψℎ[𝑢ℎ] = inf
𝑤ℎ∈A𝑞

ℎ
(Ω)

Ψℎ[𝑤ℎ] + 𝜀ℎ, (4.9)

for some sequence (𝜀ℎ) such that 𝜀ℎ → 0, as ℎ → 0. Equation (4.9) indicates that, for
a fixed ℎ, 𝑢ℎ is an almost absolute minimizer of Ψℎ. Therefore, it is natural to ask,
if 𝑢ℎ → 𝑢 in 𝐻1(Ω)2 as ℎ → 0, then is 𝑢 an absolute minimizer of the continuous
problem (4.1)? To answer this question first we reformulate the higher order terms of
the discrete energy functional in terms of lifting operators [8, 12], which will not be
presented here. Then, we prove equi-coercivity of the reformulated discrete energy Ψℎ

and the Γ−convergence of Ψℎ to the continuous energy functional Ψ. Finally, using
discrete Sobolev embeddings, [20, 21, 14], we show the convergence result of the almost
absolute discrete minimizers. A detailed study can be found in [30].

For the discrete function it holds that 𝑢ℎ ∈ 𝐻1(Ω)2 and also 𝑢ℎ

⃒⃒
𝐾

∈ 𝐻2(𝐾)2,
for all 𝐾 ∈ 𝑇ℎ. Therefore, we define the broken Sobolev seminorm for 𝑤 ∈ 𝑉 𝑞

ℎ (Ω)2:

|𝑤|2𝐻2(Ω,𝑇ℎ) :=
∑︁

𝐾∈𝑇ℎ

∫︁
𝐾

|∇∇𝑤|2 +
∑︁

𝑒∈𝐸𝑖
ℎ

1
ℎ𝑒

∫︁
𝑒

|[[∇𝑤]]|2. (4.10)

A fundamental property of the discrete energy functional is the equi-coervicity.
If equi-coercivity holds then a uniformly bounded discrete energy implies that the
discrete function 𝑢ℎ is uniformly bounded in 𝐻1(Ω)-norm and in the broken Sobolev
𝐻2(Ω, 𝑇ℎ)-seminorm. These bounds are necessary to prove the Γ-convergence result.
Also, from these bounds we can show that the limit of 𝑢ℎ belongs to 𝐻2(Ω)2 (regularity
of the limit). The proposition of equi-coercivity follows below.

Proposition 4.1 (Equi-coercivity). Let (𝑢ℎ)ℎ>0 be a sequence of displacements in
𝑉 𝑞

ℎ (Ω)2 such that for a constant 𝐶 > 0 independent of ℎ it holds that

Ψℎ[𝑢ℎ] ≤ 𝐶.
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Then the there exists a constant 𝐶1 > 0 such that

|𝑢ℎ|2𝐻2(Ω,𝑇ℎ) ≤ 𝐶1. (4.11)

In addition, if 𝑢ℎ ∈ A𝑞
ℎ(Ω) then

‖𝑢ℎ‖𝐻1(Ω)2 ≤ 𝐶2, (4.12)

for a positive constant 𝐶2, where 𝐶1, 𝐶2 are independent of ℎ.

We will say that Ψ is the Γ-limit of the sequence (Ψℎ) if the lim sup and the lim inf
inequalities are satisfied, [10, 17], as it is described in the next theorem. A Γ-convergence
result for discrete surface functionals involving high gradients using conforming spaces
can be found in [7]. The fact that in our case we use finite element spaces with only 𝐻1

regularity is the main source of technical difficulties. The next results are proved in [30].

Theorem 4.2 (Γ−convergence.). Let the strain energy function 𝑊 satisfy the upper
and lower bounds of equation (4.2). Then the following properties hold:
(i) (The lim sup inequality.) For all 𝑢 ∈ A(Ω), there exists a sequence (𝑢ℎ)ℎ>0 with

𝑢ℎ ∈ A𝑞
ℎ(Ω), such that 𝑢ℎ → 𝑢 in 𝐻1(Ω)2 and

Ψ[𝑢] ≥ lim sup
ℎ→0

Ψℎ[𝑢ℎ]. (4.13)

(ii) (The lim inf inequality.) For all 𝑢 ∈ A(Ω) and all sequences (𝑢ℎ) ⊂ A𝑞
ℎ(Ω) such

that 𝑢ℎ → 𝑢 in 𝐻1(Ω) the following holds

Ψ[𝑢] ≤ lim inf
ℎ→0

Ψℎ[𝑢ℎ]. (4.14)

Next we would like to derive some compactness properties. We would like to show that
bounded sequences of the discrete function in the 𝐻1(Ω)-norm and in the 𝐻2(Ω, 𝑇ℎ)-
seminorm are relatively compact in 𝑊 1,𝑝(Ω)2, for 𝑝 ∈ [1, +∞). Using related discrete
compactness results, see [39, 25, 20, 14], one can prove a discrete version of the Rellich-
Kondrachov Theorem for our discrete space.

Proposition 4.3 (Discrete Rellich-Kondrachov). Let a sequence (𝑢ℎ) ⊂ 𝑉 𝑞
ℎ (Ω)2 be

bounded, for a constant 𝐶 > 0, as

‖𝑢ℎ‖𝐻1(Ω) + |𝑢ℎ|𝐻2(Ω,𝑇ℎ) < 𝐶, for all ℎ > 0. (4.15)

Then (𝑢ℎ) is relatively compact in 𝑊 1,𝑝(Ω)2 for 1 ≤ 𝑝 < +∞, i.e. there exists a
𝑢 ∈ 𝑊 1,𝑝(Ω)2 such that

𝑢ℎ → 𝑢 in 𝑊 1,𝑝(Ω)2, (4.16)

up to a subsequence.
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Fig. 7: Density in the deformed configuration. The circular cavities contract 50%, i.e. their
radius is reduced from 𝑟 to 𝑟/2, deforming the surrounding material. Every circular cavity
is connected through tracts of high density with its two nearest neighbors. These tracts
correspond to a compressed phase. This computation simulates contracting explants. The
formation of the tracts is in agreement with experimental results, see [57]. For this simulation
the regularization parameter has the value 𝜀 = 0.0025𝑟.

Combining the above results we conclude to the following

Theorem 4.4 (Convergence of discrete almost absolute minimizers). Let (𝑢ℎ) ⊂ A𝑞
ℎ(Ω)

be a sequence of almost absolute minimizers of Ψℎ, i.e.,

Ψℎ[𝑢ℎ] = inf
𝑤ℎ∈A𝑞

ℎ
(Ω)

Ψℎ[𝑤ℎ] + 𝜀ℎ, (4.17)

for some sequence (𝜀ℎ) such that 𝜀ℎ → 0, as ℎ → 0. If Ψℎ[𝑢ℎ] is uniformly bounded
then, up to a subsequence, there exists 𝑢 ∈ A(Ω) such that

𝑢ℎ → 𝑢, in 𝐻1(Ω)2, (4.18)

and

Ψ[𝑢] = min
𝑤∈A(Ω)

Ψ[𝑤]. (4.19)
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5 Computation of measure-valued solutions
for hyperbolic problems

In many problems, such as (2.1), the behaviour of approximations of solutions is not
always certain. Uncertainties in the solution can be caused, for instance, by the initial
data, or the parameters appearing in the model. One of the reasons is that in practice it
is impossible to obtain exact measurements. Hence, we are interested in studying and
computing solutions that deal with the problem of uncertainty in PDEs. Furthermore,
a similar problem from a mathematical perspective relates to statistical inference on
the solutions when we study an assembly of variable data of the model. Statistics is a
discrete endeavour and when it comes to complicated models such as nonlinear PDEs
there are more than one (continuous) mathematical settings to formulate problems. A
possible way to access uncertainty in nonlinear hyperbolic systems is to use the concept
of measure-valued or statistical solutions, [38, 28, 19, 26, 2, 3, 1].

Measure valued solutions. Let now M+(R𝑚) be the set of all positive Radon measures
on R𝑚, and MP(R𝑚) = {𝜇 ∈ M+(R𝑚), 𝜇(R𝑚) = 1} the corresponding set of
probability measures. We call Young measure a weakly* measurable mapping from Ω
into MP(R𝑚). The set of all Young measures is denoted by Y(Ω,R𝑚). A parametrised
measure 𝜇 ∈ Y(Ω,R𝑚) is said to be a measure-valued solution of the conservation law
(2.1) if, [22],∫︁

Ω

(︀
⟨𝑖𝑑, 𝜇𝑥,𝑡⟩ · 𝜑𝑡 + ⟨𝐴, 𝜇𝑥,𝑡⟩ · 𝜑𝑥

)︀
𝑑𝑥𝑑𝑡 +

∫︁
R

𝑢0 · 𝜑(0, 𝑥)𝑑𝑥 = 0, (5.1)

for all 𝜑 ∈ 𝐶∞
0 (Ω) where by ⟨𝐴, 𝜇𝑥,𝑡⟩ we denote

⟨𝐴, 𝜇𝑥,𝑡⟩ =
∫︁
R𝑚

𝐴(𝜆)𝑑𝜇𝑥,𝑡(𝜆).

Note that for notational connivence in this section, we denote the flux function of the
conservation law by 𝐴 as opposed to 𝐹 or 𝑓 usually used. In a similar fashion as for
weak solutions, an entropy measure-valued solution satisfies the additional relation∫︁

Ω

(︀
⟨𝜂, 𝜇𝑥,𝑡⟩ · 𝜑𝑡 + ⟨𝑄, 𝜇𝑥,𝑡⟩ · 𝜑𝑥

)︀
𝑑𝑥𝑑𝑡 +

∫︁
R

𝑢0 · 𝜑(0, 𝑥)𝑑𝑥 ≥ 0, (5.2)

for all 𝜑 ∈ 𝐶∞
0 (Ω) with 𝜑 ≥ 0, where 𝜂 is convex and (𝜂, 𝑄) an entropy entropy-flux

pair, [16]. The notion of entropic measure-valued solutions which was originally
proposed by DiPerna [22] is rather weak when non-atomic measures are considered.
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A manifestation of this fact is the loss of uniqueness, even in the scalar case, when
non-atomic measures were allowed in the initial data, [16]; an alternative definition was
proposed recently in [27] which leads to a uniqueness result within a certain class.

Statistical methods through approximate Young measures. Our aim is to develop a new
approach to the computation of measure valued solutions and to quantify uncertainties
for nonlinear hyperbolic problems, based on two key ingredients : approximate Young
measures and kinetic models. We show below, following [29], that approximate Young
measures, [54, 50], give rise in a natural way to discrete kinetic models. In the scalar case
the kinetic formulation of conservation laws, [41, 51], provides an interesting connection
to parametrised Young measures and to compensated compactness. This connection was
further developed in [49, 52, 51] for scalar laws and in [18] where kinetic formulations
were the analytical basis to study conservation laws with stochastic forcing. Our aim is
to build an algorithmic approach which leads to efficient schemes for the computation
of measure valued solutions and to UQ starting from the scalar case. These schemes are
very different from existing sampling approaches, since they rely on solving discretised
kinetic models with prescribed approximate defect measures on the right hand side.
Kinetic formulations are used in a different way in [19].

Suppose that ℎ > 0 is a mesh discretisation parameter, let 𝑆 ⊂ R𝑚, and 𝑆ℎ

is a finite dimensional subspace of 𝐶(𝑆). We assume that there exist a continuous
linear projector 𝑃ℎ : 𝐿1(Ω; 𝐶0(𝑆)) → 𝐿1(Ω; 𝑆ℎ) = 𝑃ℎ(𝐿1(Ω; 𝐶(𝑆))). Let further
Yℎ(Ω, 𝑆) be the set of all Young measures which map Ω into (𝑆ℎ)*. One can define
Yℎ(Ω, 𝑆), the space of approximate Young measures, through the following procedure,
see [54] for details. Given 𝜇 ∈ Y(Ω, 𝑆), 𝜇 is approximated by a �̄� ∈ Yℎ(Ω, 𝑆) defined
as ∫︁

Ω

⟨𝜑, �̄�𝑥,𝑡⟩𝑑𝑥𝑑𝑡 =
∫︁
Ω

⟨𝑃ℎ𝜑, 𝜇𝑥,𝑡⟩𝑑𝑥𝑑𝑡, (5.3)

for all 𝜑 ∈ 𝐿1(Ω; 𝐶(𝑆)). To fix ideas, consider 𝑚 = 1, 𝑆ℎ being the standard finite
element space of continuous piecewise linear functions, and 𝑃ℎ the standard interpolation
operator,

𝑃ℎ(𝜑(𝑡, 𝑥, 𝜉)) =
𝑛∑︁

𝑖=1
𝜑(𝑥, 𝑡, 𝜉𝑖)𝜐𝑖(𝜉) . (5.4)
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Here, {𝜐𝑖}𝑛
𝑖=1 are the hat-basis elements of 𝑆ℎ and {𝜉𝑖 ∈ 𝑆}𝑛

𝑖=1 are the mesh points. It
is essential now to see the form of the approximate measure:∫︁

Ω

⟨𝜑, �̄�𝑥,𝑡⟩𝑑𝑥𝑑𝑡 =
∫︁
Ω

⟨
𝑛∑︁

𝑖=1
𝜑(𝑥, 𝑡, 𝜉𝑖)𝜐𝑖(𝜉), 𝜇𝑥,𝑡⟩𝑑𝑥𝑑𝑡

=
𝑛∑︁

𝑖=1

∫︁
Ω

𝜑(𝑥, 𝑡, 𝜉𝑖)⟨𝜐𝑖(𝜉), 𝜇𝑥,𝑡⟩𝑑𝑥𝑑𝑡 =
𝑛∑︁

𝑖=1

∫︁
Ω

𝛼𝑖(𝑥, 𝑡)
∫︁
𝑆

𝜑(𝑥, 𝑡, 𝜆)𝑑𝛿𝜉𝑖
(𝜆)𝑑𝑥𝑑𝑡

=
∫︁
Ω

∫︁
𝑆

𝜑(𝑥, 𝑡, 𝜆)𝑑[
𝑛∑︁

𝑖=1
𝛼𝑖(𝑥, 𝑡)𝛿𝜉𝑖

(𝜆)]𝑑𝑥𝑑𝑡 =
∫︁
Ω

⟨𝜑,

𝑛∑︁
𝑖=1

𝛼𝑖(𝑥, 𝑡)𝛿𝜉𝑖
⟩𝑑𝑥𝑑𝑡

for all 𝜑 ∈ 𝐿1(Ω; 𝐶(𝑆)) where 𝛼𝑖(𝑥, 𝑡) = ⟨𝜐𝑖, 𝜇𝑥,𝑡⟩ and 𝛿𝑥 is the Dirac measure at 𝑥.

Therefore,

�̄�𝑥,𝑡 =
𝑛∑︁

𝑖=1
𝛼𝑖(𝑥, 𝑡)𝛿𝜉𝑖

. (5.5)

In other words, expression (5.5) indicates that such approximations of a Young measure
𝜇 is reduced to the evaluation of the action of 𝜇 on every basis function 𝜐𝑖 of the space
𝑆ℎ. As the functions 𝛼𝑖 determine �̄�, the approximating schemes defined below will
have as unknowns 𝛼𝑖, in a form of a PDE system.

We can now proceed to the computation of approximate measure-valued solutions.
Substituting 𝜇 in expression (5.1) with �̄� and supposing temporarily that 𝑢0 = 0 one
leads to the approximating scheme∫︁

Ω

(︀
⟨𝑖𝑑, �̄�𝑥,𝑡⟩ · 𝜑𝑡 + ⟨𝐴, �̄�𝑥,𝑡⟩ · 𝜑𝑥

)︀
𝑑𝑥𝑑𝑡 = 0,

or, ∫︁
Ω

(︀
⟨𝑖𝑑,

𝑛∑︁
𝑖=1

𝛼𝑖(𝑥, 𝑡)𝛿𝜉𝑖
⟩ · 𝜑𝑡 + ⟨𝐴,

𝑛∑︁
𝑖=1

𝛼𝑖(𝑥, 𝑡)𝛿𝜉𝑖
⟩ · 𝜑𝑥

)︀
𝑑𝑥𝑑𝑡 = 0

Thus, one may conclude that the evolution of 𝛼𝑖 is dictated by the partial differential
equation

𝑛∑︁
𝑖=1

𝜉𝑖𝛼𝑖(𝑥, 𝑡)𝑡 +
𝑛∑︁

𝑖=1
𝐴(𝜉𝑖)𝛼𝑖(𝑥, 𝑡)𝑥 = 0. (5.6)

Expression (5.6) now will constitute the cornerstone of our approach. However, some
remarks are in order: although (5.6) has to be satisfied, this equation does not constitute
a complete PDE system, and we need to quest a system for 𝛼𝑖 at another level which
will be complete and will imply (5.6). An indicative such system can be

𝜕𝑡𝛼𝑖(𝑥, 𝑡)𝜉𝑖 + 𝜕𝑥𝛼𝑖(𝑥, 𝑡)𝐴(𝜉𝑖) = 𝑀𝑖, 𝑖 = 1, . . . , 𝑛, (5.7)
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where the source functions 𝑀𝑖 are given and satisfy
∑︀

𝑖 𝑀𝑖 = 0 . Such equations are
reminiscent of discrete kinetic models, though one has to specify appropriately 𝑀𝑖 .

Similarly, as in the case of weak solutions where we had to impose additional entropy
inequalities in order to distinguish a physically relevant solution out of infinitely many
weak solutions, in this case too, we have to enrich (5.6) in a right way with additional
information in order to compute a meaningful solution of (5.1). This can be realised
through the setting of the kinetic formulation of conservation laws, [41, 51]. In fact, to
motivate the design of appropriate discrete kinetic models leading to (5.6) we will seek
appropriate discretisations of functions 𝑓(𝑡, 𝑥, 𝜉) of the kinetic formulation: A function
𝑓(𝑡, 𝑥, 𝜉) ∈ 𝐿∞(0, +∞; 𝐿1(R2)) is called a generalised kinetic solution of the scalar
conservation law, [51], with initial data 𝑓0, if for all 𝜑 ∈ 𝐷([0, +∞) ×R×R) we have

∞∫︁
0

∫︁
R𝑚+1

𝑓(𝑡, 𝑥, 𝜉)
[︂

𝜕𝜑(𝑡, 𝑥, 𝜉)
𝜕𝑡

+ 𝐴′(𝜉)𝜕𝜑(𝑡, 𝑥, 𝜉)
𝜕𝑥

]︂
𝑑𝑥𝑑𝜉𝑑𝑡

=
∞∫︁

0

∫︁
R𝑚+1

𝑚(𝑡, 𝑥, 𝜉)𝜕𝜑(𝑡, 𝑥, 𝜉)
𝜕𝜉

𝑑𝑥𝑑𝜉𝑑𝑡 −
∫︁

R𝑚+1

𝑓0(𝑥, 𝜉)𝜑(0, 𝑥, 𝜉)𝑑𝑥𝑑𝜉,

(5.8)

where 𝑚 is a bounded nonnegative measure on ((0, +∞) × R × R) and additionally it
holds that

|𝑓(𝑡, 𝑥, 𝜉)| = 𝑠𝑔𝑛(𝜉)𝑓(𝑡, 𝑥, 𝜉) ≤ 1, (5.9a)

𝑓 =
∫︁
R

𝜒𝜆(𝜉)𝑑𝜈𝑥,𝑡(𝜆). (5.9b)

Here, 𝜈𝑥,𝑡 is a Young measure associated to 𝑓 and 𝜒𝜆 is given by

𝜒𝜆(𝜉) =

⎧⎪⎪⎨⎪⎪⎩
1 if 0 < 𝜉 ≤ 𝜆

−1 if 𝜆 ≤ 𝜉 < 0
0 otherwise.

Kinetic functions and approximate Young measures. At this point, notice that the right
term of (5.18) plays a key role. Specifically, the defect measure 𝑚 might provide the
additional information we are looking for leading to a chosen measure-valued solution.

Suppose now that the approximate Young measure 𝜈𝑥,𝑡 =
𝑛∑︀

𝑖=1
𝛼𝑖(𝑥, 𝑡)𝛿𝜉𝑖

approximates



24 I. Gkanis, G. Grekas, E. Karnessis and C. G. Makridakis

𝜈𝑥,𝑡. We see then

𝑓(𝑡, 𝑥, 𝜉) ≈ 𝑓(𝑡, 𝑥, 𝜉) =
∫︁
R

𝜒𝜆(𝜉)𝑑𝜈𝑥,𝑡 =
∫︁
R

𝜒𝜆(𝜉)𝑑[
𝑛∑︁

𝑖=1
𝛼𝑖(𝑥, 𝑡)𝛿𝜉𝑖

(𝜆)]

=
𝑛∑︁

𝑖=1
𝛼𝑖(𝑥, 𝑡)

∫︁
R

𝜒𝜆(𝜉)𝑑𝛿𝜉𝑖
(𝜆) =

𝑛∑︁
𝑖=1

𝛼𝑖(𝑥, 𝑡)𝜒𝜉𝑖
(𝜉) =

𝑛∑︁
𝑖=1

𝑓𝑖,

where 𝑓𝑖 = 𝛼𝑖(𝑥, 𝑡)𝜒𝜉𝑖
(𝜉). Therefore, one can define the approximate model

𝑛∑︁
𝑖=1

𝜕𝑓𝑖

𝜕𝑡
+

𝑛∑︁
𝑖=1

𝐴′(𝜉)𝜕𝑓𝑖

𝜕𝑥
= 𝜕�̄�

𝜕𝜉
(5.10)

where �̄� is an approximation of measure 𝑚. We observe now∫︁
R

𝜕𝑓𝑖

𝜕𝑡
+ 𝐴′(𝜉)𝜕𝑓𝑖

𝜕𝑥
𝑑𝜉 =𝜕𝑡𝛼𝑖(𝑥, 𝑡)

∫︁
R

𝜒𝜉𝑖
(𝜉)𝑑𝜉 + 𝜕𝑥𝛼𝑖(𝑥, 𝑡)

∫︁
R

𝐴′(𝜉)𝜒𝜉𝑖
(𝜉)𝑑𝜉

=𝜉𝑖𝜕𝑡𝛼𝑖(𝑥, 𝑡) + 𝐴(𝜉𝑖)𝜕𝑥𝛼𝑖(𝑥, 𝑡).
(5.11)

Therefore, by integrating (5.10) we conclude that

𝑛∑︁
𝑖=1

𝜕𝑡𝛼𝑖(𝑥, 𝑡)𝜉𝑖 +
𝑛∑︁

𝑖=1
𝜕𝑥𝛼𝑖(𝑥, 𝑡)𝐴(𝜉𝑖) =

∫︁
R

𝜕�̄�

𝜕𝜉
𝑑𝜉 = 0. (5.12)

In addition, piecewise integration leads to∫︁
R

𝜕�̄�

𝜕𝜉
𝑑𝜉 =

𝑛−1∑︁
𝑖=1

�̄�(𝑥, 𝑡, 𝜉𝑖+1) − �̄�(𝑥, 𝑡, 𝜉𝑖) = 0. (5.13)

We can see now, that expression (5.12) is of the form (5.6). Motivated by the above
discussion one can formulate alternative approximating schemes in order to compute the
unknowns 𝛼𝑖(𝑥, 𝑡). Probably the simplest case is the following: For 𝑖 = 1, . . . , 𝑛 − 1 in
each interval (𝜉𝑖, 𝜉𝑖+1) find 𝛼𝑖(𝑥, 𝑡) such that

𝜕𝑡𝛼𝑖(𝑥, 𝑡)𝜉𝑖 + 𝜕𝑥𝛼𝑖(𝑥, 𝑡)𝐴(𝜉𝑖) = �̄�(𝑥, 𝑡, 𝜉𝑖+1) − �̄�(𝑥, 𝑡, 𝜉𝑖). (5.14)

As it is obvious the implementation of the above system requires that the measure �̄�

is known. We can observe now that in kinetic models for conservation laws with small
diffusion the defect measure can be explicitly computed, [15]. Typically, it contains
a diffusion term of the kinetic function 𝑓(𝑡, 𝑥, 𝜉) as well. In fact, [15, 44], the kinetic
formulation of

𝜕𝑡𝑢 + 𝜕𝑥𝐴(𝑢) = 𝜖𝑢𝑥𝑥, 𝑥 ∈ R, 𝑡 > 0, (5.15)
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is

𝜕𝜒𝑢(𝜉)
𝜕𝑡

+ 𝐴′(𝜉)𝜕𝜒𝑢(𝜉)
𝜕𝑥

− 𝜖
𝜕2𝜒𝑢(𝜉)

𝜕𝑥2 = 𝜖

(︃
𝜕𝛿(𝜉 − 𝑢)

𝜕𝜉

(︂
𝜕𝑢

𝜕𝑥

)︂2
)︃

= 𝜕𝑚𝜖

𝜕𝜉
. (5.16)

Motivated by the above discussion, and the fact that we would like to include in our
approximate scheme artificial diffusion, we are led to the following approximating
model: Let first ̃︀𝑢 be defined through

̃︀𝑢 =
∫︁
R

𝜆𝑑𝜈𝑥,𝑡(𝜆) =
∫︁
R

𝜆𝑑

𝑛∑︁
𝑖=1

𝛼𝑖(𝑥, 𝑡)𝛿𝜉𝑖
=

𝑛∑︁
𝑖=1

𝛼𝑖(𝑥, 𝑡)𝜉𝑖.

For fixed 𝑥0, we consider 𝛿(𝜉 − 𝑥0) to be a compactly supported smooth Gaussian-like
approximation of 𝛿(𝜉 − 𝑥0). Then one can define the discrete kinetic model yielding 𝛼𝑖

through

𝜉𝑖𝛼𝑖(𝑥, 𝑡)𝑡+𝐴(𝜉𝑖)𝛼𝑖(𝑥, 𝑡)𝑥 = 𝜖𝛼𝑖(𝑥, 𝑡)𝑥𝑥

+ �̄�𝜖(𝑥, 𝑡, 𝜉𝑖+1) − �̄�𝜖(𝑥, 𝑡, 𝜉𝑖), (5.17)

where �̄�𝜖(𝑡, 𝑥, 𝜉) = 𝜖
(︀
𝛿(𝜉 − ̃︀𝑢) |̃︀𝑢𝑥|2

)︀
. We observe that at least formally, as 𝜖 → 0,

the model (5.17) is of the form (5.14). Obviously, the choice of the models is indicative
and it is open to find the schemes which will produce the most efficient approximations.
Uniquennes. Although it is quite natural to design schemes which induce a form of
artificial diffusion, a key question is, if it is possible to have some guarantees that
we compute in the limit a unique measure. A partial result in this direction is stated
below. We need first to extend the definition of generalised kinetic solutions to include
small diffusion. To this end, a function 𝑓(𝑡, 𝑥, 𝜉) ∈ 𝐿∞(0, +∞; 𝐿1(R2)) is called a
generalized kinetic solution of the viscous scalar conservation law with initial data 𝑓0,
if for all 𝜑 ∈ 𝐷([0, +∞) × R × R) we have

∞∫︁
0

∫︁
R𝑚+1

𝑓(𝑡, 𝑥, 𝜉)
[︂

𝜕𝜑(𝑡, 𝑥, 𝜉)
𝜕𝑡

+ 𝐴′(𝜉)𝜕𝜑(𝑡, 𝑥, 𝜉)
𝜕𝑥

]︂
𝑑𝑥𝑑𝜉𝑑𝑡

= −
∞∫︁

0

∫︁
R𝑚+1

𝐵𝜀(𝑥)𝜕𝑓(𝑡, 𝑥, 𝜉)
𝜕𝑥

𝜕𝜑(𝑡, 𝑥, 𝜉)
𝜕𝑥

𝑑𝑥𝑑𝜉𝑑𝑡

+
∞∫︁

0

∫︁
R𝑚+1

𝑚′(𝑡, 𝑥, 𝜉)𝜕𝜑(𝑡, 𝑥, 𝜉)
𝜕𝜉

𝑑𝑥𝑑𝜉𝑑𝑡 −
∫︁
R2

𝑓0(𝑥, 𝜉)𝜑(0, 𝑥, 𝜉)𝑑𝑥𝑑𝜉

(5.18)
where 𝑚′ is a given bounded nonnegative measure on ((0, +∞) × R × R), 𝐵𝜀(𝑥) ≥ 0,

and
|𝑓(𝑡, 𝑥, 𝜉)| = 𝑠𝑔𝑛(𝜉)𝑓(𝑡, 𝑥, 𝜉) ≤ 1, (5.19a)
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𝑓 =
∫︁
R

𝜒𝜆(𝜉)𝑑𝜈𝑥,𝑡(𝜆). (5.19b)

The next result essentially states that all viscous generalised kinetic functions have
the same limit as soon as ‖𝐵𝜖‖𝐿∞ → 0, and the defect measures satisfy a dissipative
structural assumption. Note at this point the similarity with the scalar problem (2.1)
where we obtain the unique entropy solution through the vanishing viscosity limit. The
assumption for the measures stated below is understood via regularisation and we are
not precise regarding the smoothness assumptions on the viscosity coefficients 𝐵𝜖.

Theorem 5.1. Assume that 𝑓 is a solution of (5.18) and let 𝑓 a viscous generalised
kinetic solution of (5.18) corresponding to �̄�𝜀(𝑥), �̄�′, and 𝜈. Furthermore, suppose
that the initial data and the solutions have compact support with 𝑓(0, 𝑥, 𝜉) = 𝑓(0, 𝑥, 𝜉).
In addition to these hypothesis, assume that the defect measures 𝑚′ and �̄�′ satisfy, up
to regularisation,

𝑇∫︁
0

∫︁
R

∫︁
R

𝑚′ − �̄�′ 𝑑(𝜈 − 𝜈)𝑑𝑥 𝑑𝜉 𝑑𝑡 ≤ 0, (5.20)

and 𝑚′ = 0 (�̄�′ = 0) if 𝑓 = 0 (𝑓 = 0). Then, as both ‖𝐵‖𝐿∞ , ‖�̄�‖𝐿∞ → 0 we have
the limit

‖𝑓 − 𝑓‖𝐿2 → 0 .
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