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Abstract 
 
   Research on speed-flow-density relationships usually focuses on homogeneous road 
segments. This article aims at exploring these relationships at the macro setting of a road 
network based on time series observations collected from various measurement sites (spatial 
time series). For that purpose, we use tools from spatial statistics/econometrics, namely 
dynamic equilibrium correction models in space and time. Such models not only reproduce a 
static equation under stationary conditions but also depict short-term dynamics (i.e. 
equilibrium’s speed of adjustment). Moreover, the road network’s topology is incorporated 
in the modeling stage through specification of a weighting matrix. The adopted methodology 
is illustrated through the investigation of the flow-occupancy relationship in space and time.  
In our application, we use an extensive data set that corresponds to one months’ data, 
collected from major arterials of the road network of Athens, Greece. 
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1. Introduction 
 
   It is well accepted that distinct roadways accommodate different levels and patterns of 
vehicular flow, by virtue of their design. Traffic flow is described in terms of three 
parameters: the mean speed υ, the traffic flow rate q, and the traffic density k. The functional 
relationship between these three parameters is called Fundamental Diagram. The equilibrium 
relationship that associates them is q= υ k. Accordingly, the fundamental diagram is defined 
clearly if a function between two of the three parameters is defined. Since the bivariate 
functional relations between q, υ and k are directly related to the important problem of 
estimation of road capacity, research on these issues dates back to Schaar (1925).  
    Two general approaches for stating speed-flow-density relationships may be distinguished. 
The classical approach has been a purely mathematical one. Firstly, an analytical expression 
containing several parameters is proposed and then the values of these parameters are 
estimated by fitting the expressions to traffic data. Finally, an interpretation of the parameters 
in terms of properties of traffic flow is sought, in order to provide the analytical expression 
with a phenomenological meaning. The famous speed–density models of Greenshields 
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(1935), Greenberg (1959), Underwood (1961) and Drake (1967) have been derived in such a 
manner.   
   The second approach that may be called phenomenological or behavioral is based on 
assumptions about the driver behavior with respect to some traffic variables. The early 
procedures for estimating the capacity and those derived from car-following models belong to 
this approach.  For some recent studies of that kind, the reader is referred to Kockelman 
(1998, 2001). Del Castillo and Benitez (1995a, 1995b) presented a methodology that 
combines both general approaches in a study of the speed density relationship.  
   In contrast to the previously mentioned approaches that investigate the q-υ-k bivariate 
functional forms in homogeneous road segments, the methods presented in this paper can be 
applied in a larger scale that allows inference even for a whole road network. Based on the 
existing amount of traffic flow data which nowadays is large and of good quality, the models 
developed here are purely statistical and do not incorporate theoretical rationales such as 
hydrodynamic, car-following, etc. That is, instead of building a theoretical framework and 
then test it empirically with real world data (a significant amount of such research has been 
proven to encounter severe limitations), we let data to speak-up first and play a more decisive 
role in the modeling process. 
   Traffic measurements are usually collected from loop detectors that provide traffic counts 
at constant time intervals.  Consequently, these datasets are in the form of spatial time series. 
For data of that kind, one is interested in estimating multivariable relationships in space and 
time; that is detecting possible equilibria between traffic variables and estimating their 
adjustment speed after a shock (short run dynamics). Under the assumption that a sufficiently 
large number of measurement sites exist at the network under study so that the researcher is 
allowed to ignore potential inferential biases due to their position, conjectures of that kind 
can be achieved via Dynamic Space Time models and their equilibrium correction 
formulation. Thus, this research presents a modeling strategy that allows for the examination 
of  
 

- Long-term traffic flow dynamics for the whole network: The equilibrium relationships 
between υ- q, υ- k and/or q-k in the road network. 

- Short-term dynamics of the network: Equilibrium’s speed of adjustment after a shock. 
- Long-term dynamics for each measurement location: Location specific equilibria. 
- Short-term dynamics for each measurement location: How fast the location-specific 

equilibrium is approached after a shock in this location or how fast the location-
specific equilibrium is approached after a shock in a neighboring location. 

  
    The aforementioned model class and the subsumed models that fit better on the needs of 
our problem, together with technical details on estimation and model selection are presented 
next.  The third section contains a detailed numerical illustration; the proposed methods are 
performed on a month’s data taken from eleven loops located at major arterials of the city of 
Athens.  The last section is devoted to some concluding remarks.  
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2. Dynamic space-time models and their equilibrium correction formulation for 
bivariate traffic relations 
 

2.1 The general first-order model  

  
   Past and present observations of traffic variables in the whole network can be related via a 
dynamic model in space and time. One may encounter such models in the econometrics 
literature as “serial and spatial autoregressive distributed lag models”. The interested reader 
can find an introduction to distributed lag models at Greene (1997).  Elhorst (2001) presents a 
detailed treatment of first order Dynamic Space-Time models and their equilibrium 
correction formulation. For the moment, we also consider first order models, which relate 
present observations to the instant past. Considered in vector form for a cross-section of 
observations at time t the general model is of the form shown below 1:  
 
    ttttttttt WxWxxxWyWyyy εδδγγββαµ ++++++++= −−−− 1101101101 .    (1) 
 
    A variable with subscript t-1 denotes its serially lagged value, and a variable pre-multiplied 
by W denotes its spatially lagged value.  denotes a ty 1×n

10 ,

 vector consisting of one 
observation of the dependent variable for every measurement location (i=1,..,n) at time t;  
denotes a  vector of the explanatory variable (for reasons of simplicity, only one 
regressor is considered at the moment). 

tx
1×n

101 ,,,,, 0, δδγγββαµ  are the response parameters 
and tε  is a  normally distributed vector containing the error terms with 1×n ( ) 0=tE ε  and 

. ( )ttε ′ nI2σE ε = { }0≥, ijw,...,1,: =∀= ij njiwW  denotes an nn×  matrix describing causality 
relations related to the spatial arrangement of the measurement locations. Thus,  
reflects that a change in traffic conditions close to i is expected to affect traffic conditions 
close to j.  Since no measurement location can be viewed as a neighbor of itself, weight 
matrices have zero diagonal elements. We put more emphasis on the different forms that a 
spatial weight matrix can take, in the next subsection.    

0>ijw

    The general model depicted in (1) relates current observations of let’s say average speed at 
site i to the immediately previous ones taken from that location, to current and previous linear 
combinations (that are explicitly defined through the rows of the weight matrix) of 
measurements that correspond to neighboring sites, to past and current observations of let’s 
say average density at site i, and to past and current combinations of densities that correspond 
to neighboring sites. The plausibility of the proposed model is straightforward but it should 
be underlined that we are not expected to be able to estimate the general form accurately 
because of multicollinearities2; one should estimate suitable sub-models in order to make 
inference. For example, it should be expected that the two terms corresponding to spatially 
weighted densities are highly correlated with current and past observations of densities; if this 
is confirmed, we should better drop one of the two pairs of variables out of the model. 

                                                           
1 In contrast with Elhorst (2001) there is an intercept term in (1).  Its importance wiil be evident in the 
application. 
2 Multicollinearity appears when the explanatory variables in a regression model are too highly intercorrelated to 
allow precise analysis of their individual effects. The interested reader may consult Greene (1997) chapter 9 for 
this issue.   
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2.2 The spatial weight matrix 
 
   Weight matrices as the one in equation (1) have been implicitly assumed in short term 
traffic forecasting models. In studies of that kind, measurements taken from upstream 
measurement locations (only) are supposed to have explanatory power for the ones taken 
from downstream sites thus resulting to the implicit adoption of a lower diagonal weight 
matrix (see for example Stathopoulos and Karlaftis, 2003). Kamarianakis and Prastacos 
(2002, 2003) have explicitly assumed such a matrix while using Space-Time ARIMA 
methods for short-term forecasting in urban networks. To clarify things, we present part of a 
hypothetical network and the weight matrix that corresponds to equal weights to nearest 
neighbors3. In figure 1 one may recognize the tree structure of a road network with dots 
representing measurement locations and arrows the direction of flow.    
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Figure 1. Measurement locations at a road network and the spatial weight matrix that corresponds to equal 

weights for nearest upstream neighbors. 
 
    It is important to keep in mind that all subsequent analyses are conditional upon the choice 
of the spatial weight matrix and that there are plenty of choices for its form. For example, a 
researcher may drop the assumption that only upstream locations are causal to downstream 
ones and take the k-nearest neighbors or the neighbors that lie at a predefined distance 
regardless of being upstream or downstream.  Another option that seems rational when urban 
networks are under investigation is the adoption of two weight matrices; one corresponding 
to upstream causalities and one for downstream ones. Such matrices can be part of a 
threshold autoregressive model where traffic conditions are divided into homogeneous 
regimes. Hence, one will be able to estimate the relative explanatory power of 
upstream/downstream locations to the traffic conditions of a reference location. 
   As noted in the previous subsection, one strategy is to assign equal weights to all neighbors 
of a measurement location, considering that the useful information on the evolution of our 
response given from its neighbors is of equal quantity across them; a second approach is to 
assign weights proportional to inverse distance, treating favorably the closer neighbors. For 
forecasting applications, weights can be proportional to the crosscorrelations of 
measurements that correspond to different locations. Nonzero elements of each row will 
correspond to coefficients of a vector autoregressive model where the vector contains 
measurements from the reference site and all its “neighbors”. We should finally note that in 
the vast majority of spatial modeling applications, rows of the spatial weight matrix are 
standardized to sum to one. 
                                                           
3 Alternatively weights could be proportional to inverse distance from the reference location. 
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 2.3 The equilibrium correction formulation 
 
   Let’s start from the first order serial autoregressive distributed lag model (a sub-model of 
(1) with no spatial dependencies) 
 
    ttttt xxayy εγγµ ++++= −− 1101           (2) 
 
which can be equivalently reformulated as  
 

    ttttttttt uxcxbyaxxyy +∆++∆+=
−

+∆
−

−
−
+

+∆
−

−
−

= ˆˆˆˆ
1

1
1111

110 µε
αα

γ
α
γγ

α
α

α
µ .     (3) 

 
Now short-run dynamics have been added to the static equation. That is equation (3) not only 
contains the static long run equilibrium relationship between y and x in the whole network but 
also captures short-run dynamics of how equilibrium is approached. b  reflects the long-run 
effect of y with respect to x, while c  reflects the short-run immediate response of y to a 
change in x. 

ˆ
ˆ

    Long-run dynamics of each location’s equilibria while taking into account their spatial 
arrangement within the network are given after reformulating the equation 
 
   ttttt WxxWyy εγβαµ ++++=          (4) 
to 
   ( ) ( ) ( )[ ] ttNNNt uxWWIWIWIy +−+−+−= −−− 111 αγαβµα .                (5) 
 
Via this formulation, observations from a measurement site are not only influenced by its 
local conditions, but also by those of its neighbors depending on the structure of the spatial 
weight matrix. Furthermore, the impact of these conditions is not necessarily uniform across 
spatial units.  
    In order to assess both (spatially dependent) long and short-term dynamics for each 
location one has to manipulate the general first order equation (1) to take the form 
 
( ) ( ) ( ) ( ) ttttttt xWxWxxyWyWWLI εδγδδγγβαµββα +∆−∆−++++∆+−=−−− 111010110 .  

 (6) 
This equation entails a static equilibrium relation between y and x and describes how this 
equilibrium is approached after a change on the levels of the explanatory not only at the 
location of interest, but at neighboring influential locations as well. 
    In order to illustrate equilibrium correction modeling we present a simple example. 
Following Greene (1997), we examine the relation between flow and occupancy at a single 
location. Empirical findings suggest that a linear model of squared occupancies on flows fits 
observed data quite well. Let  stand for observed flows at time t and  for squared 
occupancies. If the level of  has been unchanged for many periods prior to t, the 
equilibrium value of 

ty

tx
tx

[ ]tyE  (assuming it exists) will be  
 

    ∑∑
∞

=

∞

=

+=+=
10 i

i
i

i xaxay ββ          (7) 
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where x  is the permanent value of . For this to be finite, we must have tx ∞<∑
∞

=0i
iβ . 

Consider now the effect of a ten percent change in x  occurring in period s. Prior to the shock 
in occupancies, flows had reached equilibrium. The path to the new equilibrium might appear 
as shown in figure 2. The short-run effect is the one which occurs in the same period as the 
change in x . This is 0β  in the figure; this is the short-run multiplier. The differences 
between the old equilibrium D0 and the new one D1, is the sum of individual period effects. 

That is the total effect is equal to ; β is the equilibrium multiplier.  ∑
∞

=0ι

= ββ i

 
 

 
 

Figure 2: Lagged adjustment of traffic flow equilibria. 

 
 

2.4 Technical details 
 
    The serial lagged dependent variable among regressors causes the OLS estimators to lose 
their unbiasedness property. The spatial-econometrics literature has shown that the inclusion 
of a spatial lag of the dependent on the right hand side of the equation not only makes the 
OLS estimator to lose its unbiasedness but it loses its consistency as well. The most 
commonly suggested method to overcome this problem is estimation via maximum 
likelihood (see Anselin, 1988, pp. 181-182). Elhorst (2001) provides the (conditional upon 
the vector of first observations) log-likelihood function of the general first order model given 
by equation (1): 
 

    ( ) ( ) ( ) ∑
=

′−−−+−−=
−

T

t
ttYYYY WITTnLogf

TT
2

2
2

,...,, 2
1log12log1

2
1

121
εε

σ
απσ    (8) 

 
Thus, if one wants to test against different model generating formulations through Wald, 
Lagrange multiplier or likelihood ratio tests4 and a spatial-lag model lies among the ones 
                                                           
4 For a detailed treatment on tests for model selection, see Greene (1997) chapter 11. The aforementioned tests 
apply for nested hypotheses. Elhorst (2001) encountered difficulties and did not provide clear results when non-
nested models had do be compared in model selection procedures. It seems that a recent paper by Rivers and 
Vuong (2002) enlightens that area. 
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tested, he/she should estimate all of them via maximum likelihood. To facilitate maximum 
likelihood estimation of the α coefficient that reflects instantaneous spatial association in (1) 
and to ensure invertibility of the matrix ( )WI α− , Ord (1981) demonstrates the following 
requirement   
 

   
maxmin

11
ω

α
ω

<<            (9) 

 
where ωmin, and ωmax are the minimum and maximum characteristic roots of the spatial 
weight matrix W. 
   Elhorst (2001) provides a general condition so that the general space-time process (1) is 
stationary in time: 
 
    ( )( ) 11

01 <−+ −WIWI ββα .                  (10) 

 
He also describes in detail stationarity conditions on restricted models. These restrictions are 
captured by the log-likelihood functions in that these functions are not defined for parameter 
values that do not satisfy these conditions.  
 
 

                                                          

3. The application 
 

3.1 The study area and the data analyzed 
 
   The urban area of Athens, the capital of Greece, has an area of 60 km2 and a population of 
approximately four million people. Total daily demand for travel is about 5.5 million trips 
with about 1 million occurring during the 2-hour peak period. A set of 88 loop detectors has 
been installed by the Ministry of Environment and Public Works at major roads of the Athens 
network to measure traffic volume and road occupancy. Measurements take place every 90 
seconds and are immediately transmitted to the Urban Traffic Control Center where they are 
used by the Siemens MIGRA traffic control system to adjust street lights timing and stored in 
databases for further analysis, see Kotzinos (2001). An indicator of data quality ranging from 
1 to 3 is transmitted as well since often electronic or system failures result in measurements 
that might not be accurate. 
   The dataset used for the illustration of the methodology consists of observations that 
correspond to eleven loop detectors (figure 2). For all loops, traffic direction is towards the 
center of the city5.  A typical period –in terms of traffic flow- was selected to be studied: 
from February 11 2002, to March 10, 2002. Observations corresponding to weekends were 
discarded since traffic flow patterns differ significantly these days. The initial dataset 
contained a time series of 21210 observations for every loop detector. To ease 
implementation and smooth out noise, averages over five consecutive 90-second intervals 
were taken, thus resulting in a total of 4242 observations per detector, 192 measurements per 
day for each loop.  
   Observations from loop detector seven are depicted at figure 4. A sinusoidal pattern can be 
observed in both volumes and occupancies, the higher part corresponding to morning until 

 
5 The total number of loops located at streets with direction towards the center of Athens is thirty six. Twenty 
five of them provided data of high quality at the period of our study; the eleven loops we use are a subset of 
these twenty five.   
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afternoon when congestion occurs and the lower part corresponding to the night hours. There 
is also a sign of dependence between the level of relative velocities and their variation. These 
findings hold in general for every measurement location of our study. 
 
 

 
Figure 3. Loop detectors at the Athens road network. The ones used in this study are 

highlighted with different color and a label. 
 
 

 
Figure 4.  Evolution of volumes and densities through time for loop detector 7 



Kamarianakis and Prastacos 9

 
3.2 Preliminary data investigation  
 
   The first step of the analysis was to investigate the flow-occupancy relationship for each 
loop detector separately. Seeking for an optimal linear model that best describes the relation, 
we applied the nonparametric method proposed by Young et al. (1976)6. Essentially, this 
method seeks for optimal transformations that need to be applied to a pair of variables so that 
their relationship becomes linear; the criterion used is maximization of R2. For all loops, we 
observed that a polynomial of third order is better suited for occupancies. For volumes, 
results were not easily interpretable though; see for example figure 5, which displays the 
nonparametric smoothing spline transformations for loop seven. We continued via using the 
parametric method proposed by Box and Cox (1964). The Box-Cox method was applied to 
volumes given that they had to be expressed as third order polynomials of occupancies. In 
any case, no deviation from the original scale was indicated7.   
     We thus performed linear regressions8 of third order polynomials of occupancies 
(explanatory part) to observed volumes, for each loop. Results are presented at table 1; figure 
6 depicts some volume-occupancy scatterplots together with the polynomial regression 
curves. What one first observes from the R2 statistics is the very satisfactory fit of the third 
order polynomial curves to the observed flow-occupancy relationships (except for loop 67) 
and the closeness of the R2 of the regression when compared with the maximum R2 that can 
be achieved from a nonparametric transformation of volumes and occupancies (last column). 
One should also note the similarity of regression coefficients for loops located at the same 
road. Regression errors were found to be both heteroscedastic and autocorrelated; that is one 
expects different levels of error on the prediction of volumes, at different levels of 
occupancies. Moreover the observed errors differ significantly from the i.i.d. regression 
hypothesis, displaying short term dependencies of large size. Heteroscedasticity and 
autocorrelation properties are directly related to the fact that both volumes and occupancies 
display larger variation at their high levels (mean dependent variation) and are time 
dependent variables. For normally distributed errors, these properties make the ordinary least 
squares estimators to lose their efficiency property.  Given the size of our sample this is not a 
significant problem; what is important in our case is that our estimations continue being 
unbiased. 

 
FIGURE 5.Transformations that linearize the relationship between volumes and occupancies. 

                                                           
6 SAS/STAT PROC TRANSREG (Morals algorithm) used on that purpose. 
7 The Box-Cox method uses maximum likelihood to find an optimal power transformation of the response 
variable. It not only provides transformations that linearize a relationship but it homogenizes variance as well. In 
our application we observed that variance levels of volumes were significantly different at different occupancy 
levels. 
8 Regressions were performed after statistically significant outliers were identified and deleted (Table1 column 
8).  
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INTERCEPT  LINEAR QUADRATIC CUBIC  REG 
R2 

RMSE Outliers 
Num. 

SM. SPLINE R2 

Loop 1 5.517 
(0.2) 

5.1 
(0.036) 

-0.139 
(0.0014) 

0.0011 
(148 E-7) 

0.89 5.56 21 0.93 

Loop 4 5.84 
(0.19) 

4.7 
(0.03) 

-0.12 
(0.001) 

0.009 
(484 E-7) 

0.91 5.11 7 0.96 

Loop 7 6.22 
(0.178) 

4.38 
(0.028) 

-0.1 
(0.001) 

0.0006 
(983 E-8) 

0.93 4.62 0 0.947 

Loop 8 -0.553 
(0.226) 

3.855 
(0.037) 

-0.062 
(0.0013) 

0.0003 
(128 E-7) 

0.96 4.82 4 0.96 

Loop 11 4.54 
(0.177) 

6.485 
(0.035) 

-0.2 
(0.0018) 

0.0018 
(242 E-7) 

0.95 4.68 24 0.96 

Loop 12 9.95 
(0.2) 

3.475 
(0.03) 

-0.08 
(0.0011) 

0.0005 
(979 E-8) 

0.83 5.74 0 0.933 

Loop 14 7.735 
(0.22) 

4.2 
(0.043) 

-0.1 
(0.0015) 

0.0006 
(136 E-7) 

0.86 5.62 6 0.9 

Loop 16 4.2 
(0.19) 

4.46 
(0.03) 

-0.1 
(0.0012) 

0.0006 
(127 E-7) 

0.95 4.12 12 0.95 

Loop 60 2.12 
(0.1) 

1.7 
(0.01) 

-0.046 
(0.0005) 

0.0003 
(404 E-8) 

0.84 2.26 14 0.86 

Loop 67 2.13 
(0.26) 

1.74 
(0.03) 

-0.04 
(0.0008) 

0.0003 
(64 E-7) 

0.55 6.087 0 0.59 

Loop 82 2.741 
(0.1) 

0.85 
(0.01) 

-0.015 
(0.0004) 

0.0001 
(363 E-8) 

0.83 2 1 0.84 

 
Table 1. Third order polynomial regression of volumes on occupancies. 

 

 
Figure 6.  Occupancy-Volume scatterplots and third-order regression curves for four loops of the study. 
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3.3 Model fitting 
 
   The first step of the modeling stage was the construction of a weight matrix that reflects 
causality relations in the set of the eleven loops of the study. To simplify the analysis, we 
adopted the hypothesis of “upstream causality”; that is traffic conditions at upstream 
locations are causal to what we observe downstream and not vice-versa.9  For comparative 
purposes, we constructed two spatial weight matrices; the first contained only the nearest 
upstream neighbors for loops 4, 7, 12, 14 and 16. The second one contained all upstream 
neighbors with equal weights (figure 7). Each pair of spatial lags of volumes and occupancies 
– ( ) - contained almost perfectly correlated variables (Pearson 
correlation >0.97 for both cases) and because of that, modeling results were practically the 
same with either matrix.  The modeling results presented next, correspond to the choice of the 
first weight matrix. 

( tttt xWxWyWyW 2121 ,,, )

 

25.0005.000025.025.00086
00000005.05.00067
00033.000033.033.00060
0000100000016
0000010000014
0000001000012
0000000000011
000000000008
000000000107
000000000014
000000000001

866760161412118741

1

loop

W =

           

25.0005.000025.025.00086
00000005.05.00067
00033.000033.033.00060
000033.033.033.0000016
000005.05.0000014
0000001000012
0000000000011
000000000008
0000000005.05.07
000000000014
000000000001
866760161412118741

2

loop

W =

 
 Figure 7.  The two weight matrices used 

 
    At the previous subsection, when modeling took place for each detector separately, it was 
shown that volumes can be well represented by third order polynomials of occupancies. In 
the “pooled-loop” case where we examine models of the form  
 
    ttt bxay ε++=                      (11) 
 
and  are vectors of observations at time t  corresponding to a set of loops, this is not the 
case. Due to high correlation (Pearson’s r >0.95) between pooled occupancies and pooled 
squared occupancies and much higher correlation of occupancies with volumes (Pearson’s r 
=0.45) than with squared occupancies (Pearson’s r =0.29) one should estimate models (1), 
(2), (4) with occupancies as the explanatory variable and not with squared occupancies or 
both.  

tt xy ,

   To assess long and short run dynamics for the whole network, one has to estimate equation 
(2). However, occupancies and serially lagged occupancies are so correlated (Pearson’s r 
>0.97) that the specified regression model (2) would be susceptible to multicollinearity 
symptoms; the most important of these is that small changes in the data can produce large 
swings in the parameter estimates. There is no problem however for direct estimation of the 

                                                           
9 “Downstream causality” is expected to hold when traffic is at the stage of congestion. One may estimate the 
explanatory  power of upstream versus downstream locations for a reference site at different states of traffic, via 
adopting two weight matrices (one for upstream and one for downstream locations) and a regime switching 
methodology. 
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last part of equation (3) via maximum likelihood10. Estimation results and model fit 
statistics11 are displayed in table 2. It appears that a constant term is highly significant and 
contributes to the accuracy of the distributed lag model:  
 
   .                    (12) ttttt xcxbyay εµ +∆++∆+= ˆˆˆˆ
 
   Suppose our estimates were obtained from a large dataset of loop detectors that represents 
unbiasedly the traffic conditions of the network under study and a researcher wants to have 
an idea on the long and short term volume-occupancy dynamics at a location far from any 
detector. Using the estimated coefficients one can estimate these dynamics supposing 
essentially that the unknown location is an “average” one in terms of traffic conditions. 
 
         

µ̂   α̂  b̂  ĉ    AIC SBC Stand. Error 

Eq. 
(12) 

22.72 
(0.13) 

0.494 
(0.015) 

0.45 
(0.0039) 

-0.229 
(0.01) 

 400479.5 400514.6 17.68 

Table 2. Maximum likelihood estimates and model fit for models (3) and (6) . 
 
   We continue with the direct estimation of model (4) via maximum likelihood. This model 
illustrates the equilibrium dynamics of all studied locations while accounting for their 
dependencies with other parts of the network, as they are denoted by the spatial weight 
matrix. Suppose average occupancies are expected to change at a particular location close to 
a loop (let’s say due to constructions). This model provides estimates of the (average) 
volumes at locations affected by that change.  
 

µ   α  β  γ    AIC SBC Stand. Error 

Eq. 
(4) 

27.45 
(0.15) 

-0.19 
(0.005) 

0.5 
(0.004) 

-0.015 
 

 399390 399425 17.47 

Table 3. Maximum likelihood estimates and model fit for model (4). 
 
 
 

4. Conclusions and directions for further research 
 
    Based on current advances in space-time modeling, this work demonstrates a methodology 
that allows for extracting useful information from traffic variables collected from numerous 
locations of a road network. We have demonstrated how one may estimate both long and 
short-term dynamics in bivariate traffic relations and how one can assess effects of changes in 
traffic conditions at a reference location to neighboring ones. 
    It should be underlined that the proposed models are conditional upon the choice of a 
spatial weight matrix that reflects spatial dependencies, that is causal relations between 
neighboring sites. Until now, in all spatial modeling applications these matrices were 
exogenously defined resulting in some arbitrariness in the modeling stage. In subsection 2.2 
we explore the possible forms that an exogenously defined spatial weight matrix may take 

                                                           
10 Marquardt’s algorithm used on that purpose. 
11 The Swartz Bayesian Criterion (SBC) and Akaike’s Information Criterion (AIC) are penalized likelihood 
statistics that indicate model fit. The less their value the better model fit is. The standard error estimate at the 
last column of table 2 corresponds to the square root of the residual variance. 
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according to a researcher’s inferential needs. We also mentioned a way that allows an 
endogenous definition for the spatial weights. 
    To illustrate the proposed method we performed a detailed numerical application using 
volume-occupancy measurements collected from various locations of an urban network. We 
first analyzed each measurement site separately and that allowed us to observe a great degree 
of variation in the volume-occupancy relation due to each location’s specific characteristics. 
Next, we proceeded to the space-time modeling stage where the reader may notice some 
difficulties encountered and how they can be circumvented.  
    Traffic variables are characterized by a periodic pattern. A next step in this research should 
be the adoption of a regime switching methodology that allows for different long and short-
term dynamics when traffic conditions fall into different regimes. We should finally note that 
special forms of the proposed models –the ones with no contemporaneous spatio-temporal 
dependencies- can be used for short-term forecasting. A general first order model that can be 
used for that purpose comes from a modification of equation (1) 
 
    tttttt WxxWyyy εδγβα ++++= −−−− 1111111                  (13) 
 
and it is straightforward to define higher order models. The main advantage of this approach 
in short term traffic forecasting is that one uses a single model to forecast observations taken 
from various locations. There is a clear resemblance of equation (8) and the Space Time 
Arima models used by Kamarianakis and Prastacos (2002, 2003). 
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